Diagnosis and management of congenital diaphragmatic hernia: a 2023 update from the Canadian Congenital Diaphragmatic Hernia Collaborative

Pramod Puligandla ⁽¹⁾, ¹ Erik Skarsgard, ² Robert Baird, ² Elena Guadagno ⁽¹⁾, ³ Alexandra Dimmer, ¹ Olivia Ganescu, ¹ Nimrah Abbasi, ⁴ Gabriel Altit ⁽¹⁾, ⁵ Mary Brindle, ⁶ Sairvan Fernandes, ² Shyamala Dakshinamurti, ⁷ Helene Flageole, ⁸ Audrey Hebert, ⁹ Richard Keijzer, ¹⁰ Martin Offringa ⁽¹⁾, ¹¹ Dylan Patel ⁽¹⁾, ¹⁰ Greg Ryan, ¹² Michael Traynor, ¹³ Augusto Zani, ¹⁴ Priscilla Chiu, ¹⁵ The Canadian Congenital Diaphragmatic Hernia Collaborative

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi. org/10.1136/archdischild-2023-325865).

For numbered affiliations see end of article.

Correspondence to

Dr Pramod Puligandla, Pediatric Surgery, McGill University Health Centre, Montreal, QC H4A 3J1, Canada; pramod.puligandla@mcgill.ca

Received 8 June 2023 Accepted 2 October 2023

ABSTRACT

Objective The Canadian Congenital Diaphragmatic Hernia (CDH) Collaborative sought to make its existing clinical practice guideline, published in 2018, into a 'living document'.

Design and main outcome measures Critical appraisal of CDH literature adhering to Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Evidence accumulated between 1 January 2017 and 30 August 2022 was analysed to inform changes to existing or the development of new CDH care recommendations. Strength of consensus was also determined using a modified Delphi process among national experts in the field.

Results Of the 3868 articles retrieved in our search that covered the 15 areas of CDH care, 459 underwent full-text review. Ultimately, 103 articles were used to inform 20 changes to existing recommendations, which included aspects related to prenatal diagnosis, echocardiographic evaluation, pulmonary hypertension management, surgical readiness criteria, the type of surgical repair and long-term health surveillance. Fifteen new CDH care recommendations were also created using this evidence, with most related to the management of pain and the provision of analgesia and neuromuscular blockade for patients with CDH.

Conclusions The 2023 Canadian CDH Collaborative's clinical practice guideline update provides a management framework for infants and children with CDH based on the best available evidence and expert consensus.

Check for updates

© Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published

To cite: Puligandla P, Skarsgard E, Baird R, et al. Arch Dis Child Fetal Neonatal Ed Epub ahead of print: [please include Day Month Year]. doi:10.1136/ archdischild-2023-325865

INTRODUCTION

In 2018, the Canadian Congenital Diaphragmatic Hernia (CDH) Collaborative produced a clinical practice guideline (CPG) for the diagnosis and management of CDH.¹ Leveraging national, interdisciplinary expertise and the best available evidence, this guideline reflected a pragmatic approach to optimal CDH management that sought to minimise variations in care. In order to further increase the guideline's uptake and utilisation, we developed a free smartphone application providing ready access to CDH care recommendations and

WHAT IS ALREADY KNOWN ON THIS TOPIC

- ⇒ Congenital diaphragmatic hernia (CDH) is a developmental defect that requires intensive cardiorespiratory support in the perioperative period.
- ⇒ The exemplar anomaly in CDH is pulmonary hypoplasia, which manifests as postnatal pulmonary hypertension of variable severity; however, infants with CDH also experience additional multisystem morbidity.
- ⇒ Multisystem morbidity extends into childhood and adolescence and necessitates long-term health surveillance.

WHAT THIS STUDY ADDS

- ⇒ This study builds on existing care recommendations published in 2018 that address all phases of CDH care from prenatal diagnosis, to in-hospital care, to post-discharge health surveillance.
- ⇒ Twenty existing recommendations have been revised, and another 15 new CDH care recommendations have been developed, especially in the area of pain control and analgesia.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

- ⇒ This study provides a framework for CDH management that continues to reduce unwanted variability in CDH care as well as improve patient outcomes.
- ⇒ The updated care recommendations provide a pragmatic approach to CDH care that are applicable to all stakeholders involved in CDH care globally.
- ⇒ The updated care guidelines still allow for innovation and continued advancement in CDH care.

the evidence that informed them.² Knowledge synthesis related to care of CDH has been ongoing since 2018, and an update that assimilates recent best evidence using a rigorous appraisal methodology is timely.

by BMJ.

The scope of this project involved the appraisal and assimilation of the accumulated, best available evidence since 2017 into the existing CPG. As with the original version, the recommendations encompass all phases of CDH care from prenatal diagnosis to in-hospital management to post-discharge health surveillance. This update represents another collaborative effort among CDH experts and thought leaders across Canada and is relevant not only to users in North America, but around the world.

METHODS

Online supplemental appendix 1 provides a detailed description of the methods used by the CDH Collaborative to update the 2018 guidelines, including: (1) the steering committee and working group composition (2) the literature search conducted from 1 January 2017 to 30 August 2022 (figure 1 and online supplemental materials); (3) the evidence appraisal process using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology³ (figure 1 and online supplemental appendix 2); (4) the iterative process of evidence assessment leading to modification of existing recommendations or the creation of new ones; (5) the taxonomy used to assign strength of recommendation (figure 2); (6) the modified Delphi endorsement process which established consensus on new or modified guidelines using predetermined thresholds (figure 3); and (7) the management of competing interests. As with the original version, these recommendations encompass all phases of CDH care from prenatal diagnosis to in-hospital management to post-discharge health surveillance.

The following subject areas informed the literature search. If no new evidence was found to compel a significant change to the 2018 recommendations, that subject area's recommendations are 'unchanged'. Recommendations from 2018 that were modified based on new evidence are designated as 'updated' or 'new' based on degree of novelty. Two new subject areas (management of gastro-oesophageal reflux, and analgesia, sedation and neuromuscular blockade) have been added to the updated guidelines:

- 1. Prenatal diagnosis and treatment.
- 2. Fetal therapy.
- 3. Ventilation.
- 4. Fundamentals of haemodynamic support.
- 5. Role of echocardiography.

Figure 1 PRISMA flow diagram. ECLS, extracorporeal life support; GERD, gastro-oesophageal reflux disease; MIS, minimally invasive surgery; PG, prostaglandin; PPHN, persistent pulmonary hypertension of the newborn; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Level A	
	High-quality evidence from more than 1 RCT
•	Meta-analyses of high-quality RCTs
	One or more RCTs corroborated by high-quality registry studies
Level B-F	R (Randomized)
	Moderate-quality evidence from 1 or more RCTs
	Meta-analyses of moderate-quality RCTs
Level B-N	vR (Non-randomized)
	Moderate-quality evidence from 1 or more well-designed, well-executed
	nonrandomized studies, observational studies, or registry studies
•	Meta-analyses of such studies
Level C-I	LD (Limited data)
	Randomized or nonrandomized observational or registry studies with
	limitations of design or execution
•	Meta-analyses of such studies
	Physiological or mechanistic studies in human subjects
Level C-H	20 (Expert Opinion)
	Consensus of expert opinion based on clinical experience

Figure 2 Taxonomy of the levels of evidence used to grade recommendations.¹ RCTs, randomised controlled trials.

- 6. Role of prostaglandins in the management of CDH-associated pulmonary hypertension.
- 7. Targeted pulmonary vasodilation in CDH-associated pulmonary hypertension.
- 8. Role of extracorporeal life support (ECLS).
- 9. Surgical readiness.
- 10. Options for non-primary surgical repair.
- 11. Open versus minimally invasive surgical repair.
- 12. Surgical repair on ECLS.
- 13. Management of gastro-oesophageal reflux.
- 14. Long-term follow-up.
- 15. Analgesia, sedation and neuromuscular blockade.

RESULTS

Twenty CDH care recommendations were updated, and 15 new recommendations were added. These are presented below, categorised by the 15 care areas in CDH management.

Agreement with recommendation:

- 1) Strongly agree
- 2) Somewhat agree
- 3) Neither agree or disagree
- 4) Somewhat disagree
- 5) Strongly disagree

Prenatal diagnosis and management

Prenatally diagnosed CDH is associated with additional structural and genetic anomalies in 30–40% of cases,^{4 5} most commonly cardiovascular malformations.⁶ All antenatally detected cases of CDH should undergo a detailed anatomical survey and fetal echocardiogram in a tertiary fetal medicine centre. All affected pregnancies should be offered invasive genetic testing with chromosomal microarray analysis (CMA) given a 10–13% risk of CMA abnormality in isolated CDH.⁷⁸ Expanded genomic analysis (eg, exome sequencing, RNA analysis) will likely increase this diagnostic yield further⁹¹⁰ (table 1).

Antenatal sonographic predictors of neonatal survival include the observed-to-expected lung-to-head ratio (o/e LHR)^{11–13} and intrathoracic liver herniation.^{13–15} The o/e LHR should be measured with the trace method (figure 4) between 22 and 32 weeks' gestational age (GA)^{13–16–17} in experienced centres.^{18–19} Severe pulmonary hypoplasia is predicted by an o/e LHR of $\leq 25\%$ in left CDH and o/e LHR $\leq 50\%$ for right CDH,²⁰ with estimated survival of $\leq 30\%^{11-12-21}$ and $20\%^{20}$ for left and right CDH, respectively. Moderate pulmonary hypoplasia is defined as an o/e LHR of 26-34% in left CDH. Intrathoracic liver herniation may be challenging to recognise sonographically. As such, stomach position classification has been proposed as a surrogate,^{22–25} and has been shown to correlate with neonatal mortality and morbidity.^{23–24–26} Although promising in its simplicity, this prognosticator requires further prospective validation.

Fetal magnetic resonance imaging (MRI) provides additional prognostic information by assessing the o/e total fetal lung volume (o/e TFLV)²⁷ and quantifying liver herniation.²⁸ ²⁹ An o/e TFLV<35% and intrathoracic liver herniation are significant predictors of mortality.^{11 13 27-29} When compared with ultrasound (US), MRI is more reproducible and is not limited by maternal habitus or fetal position. Additionally, MRI parameters perform better, with greater sensitivity and specificity for survival prediction.³⁰ Based on the protocol from the TOTAL trial,²¹ as well as current practice in most centres performing fetal tracheal occlusion, the ideal timing for MRI appears to be around 26 weeks since earlier timing may lead to inaccurate measurements. Combined, o/e TFLV and liver herniation demonstrate better predictive value for mortality and need for ECLS.²⁹ Although MRI may be advantageous for prenatal prognostication, US assessment is likely to remain the cornerstone of antenatal prognostication due to its widespread availability. Both imaging modalities should be used together, particularly in high-risk fetuses.

Level of Consensus	Description
4	STRONG AGREEMENT with recommendation: >80% #1 or #5
3	GOOD AGREEMENT with recommendation: >80% of #1 + #2 or #4 +
	#5 but >50% of the votes as #1 or #5
2	WEAK AGREEMENT with recommendation: $>80\%$ of $#1 + #2$ or $#4 +$
	#5 but <50% of the votes as #1 or #5
1	NO CONSENSUS

Table 1 Updated and new recommendations regarding prenatal diagnosis and management of CDH ⁷⁻¹	0 13 16 18 20 26 32 152–154	
Updated recommendations	Strength of consensus	Level of evidence
1.1 Ultrasound measurement of o/e LHR using the trace method should be obtained between 22 and 32 weeks' GA, in consultation with a regional fetal medicine/therapy programme.	4	B-NR
1.2 Observed/expected LHR cut-offs of \leq 25% and \leq 50% should be used to predict poor outcome for left and right CDH, respectively.	4	B-NR
1.3 MRI for the assessment of o/e TFLV and liver herniation should be considered in all fetuses with CDH, and is strongly recommended in fetuses with severe or moderate CDH by o/e LHR, ideally in collaboration with a fetal therapy programme.	4	B-NR
New recommendations	Strength of consensus	Level of evidence
New recommendations 1.4 Due to the increased risk of associated structural anomalies, a detailed anatomy assessment and a fetal echocardiogram should be performed in a tertiary fetal medicine centre for all pregnancies with prenatally diagnosed CDH.	Strength of consensus 3	Level of evidence B-NR
New recommendations 1.4 Due to the increased risk of associated structural anomalies, a detailed anatomy assessment and a fetal echocardiogram should be performed in a tertiary fetal medicine centre for all pregnancies with prenatally diagnosed CDH. 1.5 Invasive antenatal genetic testing, ideally with chromosomal microarray analysis, should be offered in all CDH pregnancies.	Strength of consensus 3 4	Level of evidence B-NR B-NR
New recommendations 1.4 Due to the increased risk of associated structural anomalies, a detailed anatomy assessment and a fetal echocardiogram should be performed in a tertiary fetal medicine centre for all pregnancies with prenatally diagnosed CDH. 1.5 Invasive antenatal genetic testing, ideally with chromosomal microarray analysis, should be offered in all CDH pregnancies. 1.6 Delivery at ~39 weeks gestation should be considered, with delivery planning in a tertiary centre experienced in the management of CDH with NICU, PICU and paediatric surgery expertise. Mode of delivery should be determined based on standard obstetric indications.	Strength of consensus 3 4 4	Level of evidence B-NR B-NR B-NR

CDH, congenital diaphragmatic hernia; GA, gestational age; NICU, neonatal intensive care unit; NR, non-randomised; o/e LHR, observed-to-expected lung-to-head ratio; o/e TFLV, observed-to-expected total fetal lung volume; PICU, paediatric intensive care unit.

Delivery is recommended in a tertiary care centre with neonatal intensive care unit (NICU) and paediatric surgery expertise in CDH management, as outborn delivery is a significant predictor of mortality.³¹ Mode of delivery should be determined on usual obstetric grounds, and should be considered between 38 and 39 weeks' gestation due to reportedly improved survival at 28 days with term delivery.³²

Figure 4 Axial section of the fetal chest demonstrating sonographic measurement of the right (RT) lung area using the 'trace' method in a fetus with left CDH. The lung area is obtained on a well-optimised cross-section of the fetal chest at the level of the four-chamber view of the heart, by manually tracing the lung perimeters. The lung area is combined with the fetal head circumference to obtain an observed-to-expected lung-to-head ratio. CDH, congenital diaphragmatic hernia; LT, left.

Fetal therapy in CDH

Due to the significant morbidity and mortality associated with CDH, fetal interventions aimed at improving lung development in utero have been investigated.³³⁻³⁵ Fetal endoscopic tracheal occlusion (FETO), a minimally invasive percutaneous procedure that prevents egress of fetal fluid and consequent accelerated airway and pulmonary vessel growth, has shown promise.³⁶ In both multicentre and single-centre cohort studies, FETO has demonstrated statistically improved survival for left and right CDH.^{20 37-40} The Tracheal Occlusion to Accelerate Lung growth (TOTAL) randomised controlled trials (RCTs) evaluated the impact of FETO on survival in isolated left CDH predictive of both moderate (o/e LHR 25-35% or o/e LHR 35-45% with liver herniation)⁴¹ and severe (o/e LHR <25%) pulmonary hypoplasia, in comparison with standard neonatal management.²¹ In the 'severe' trial, a significant improvement in survival to discharge (40% vs 15%; p=0.009) was noted with FETO insertion at 27-29 weeks' gestation compared with expectant management, despite an increased incidence of preterm premature rupture of membranes (PPROM: 47% vs 11%) and preterm birth (75% vs 29%). Despite later FETO at 30-32 weeks' gestation in the moderate trial, there was also an increased incidence of PPROM (44% vs 12%) and preterm birth (64% vs 22%), without an improvement in survival (63% vs 50%; p=0.06).⁴ Pooled data from both trials were reanalysed to evaluate the heterogeneity of treatment effect by o/e LHR and GA at balloon insertion, and found no evidence of effect by o/e LHR. Rather, the differences in results between trials were likely due to later balloon insertion in the moderate trial⁴² (table 2).

Table 2	New recommendations regarding fetal therapy in
CDH ^{20 21 39}	9-42 44 45

New recommendations	Strength of consensus	Level of evidence
2.1 Fetal endoscopic tracheal occlusion (FETO) should be considered a treatment option and discussed with parents for all cases of severe CDH.	4	A
2.2 FETO may be considered as a treatment option for moderately severe CDH.	4	B-R
CDH, congenital diaphragmatic hernia; R, randomised.		

Based on these studies, FETO is an option for severe, and possibly moderate risk CDH in selected patients, with more research required for its use in infants with moderate CDH. Discussions regarding FETO lend themselves to a shared decision-making approach with families. It is important to consider potential burdens and issues of healthcare access for family and caregivers related to maternal risks, distance and displacement from home for the duration of treatment (since FETO is only offered in very select centres with extensive fetoscopic experience), and the impact on the family unit, particularly with respect to disruption of the support structure, occupation and wages/income. Further studies are also needed to evaluate the impact of prematurity on neonatal morbidity and long-term outcomes following FETO therapy.

Research addressing the prevention of pulmonary hypertension using antenatal sildenafil has been promising, with animal studies demonstrating some rescue of the pulmonary vascular bed and improved airway morphometry with transplacental sildenafil therapy.^{43 44} Trials are ongoing to evaluate the transplacental transfer and safety of sildenafil in humans,⁴⁵ which may lead to a randomised trial of antenatal sildenafil for pulmonary hypertension mitigation.

Ventilation in CDH

Airway management at birth

The neonatal resuscitation guideline from the American Heart Association and the American Academy of Pediatrics supports immediate endotracheal intubation for neonates with a known diagnosis of CDH and the avoidance of bag–valve–mask ventilation.⁴⁶ A small, retrospective audit found that a spontaneous breathing approach was successful in 40% of infants with mild CDH (o/e LHR >50%), although half of the successful cases required non-invasive ventilation with its attendant risk of hollow visceral insufflation.⁴⁷ Survival to discharge and total duration of postoperative ventilation were identical regardless of whether or not the trial of spontaneous breathing was successful. This new evidence is insufficient to lead to a revision of the current recommendation (table 3).

Mode of ventilation

The VICI trial⁴⁸ attempted to provide level I evidence regarding the initial ventilatory mode in CDH. Analysis of the 171 of 356 targeted patients showed similar rates of mortality and bronchopulmonary dysplasia between groups initially managed with conventional mechanical ventilation (CMV) versus highfrequency oscillatory ventilation (HFOV).

Two retrospective studies comparing conventional ventilation with high-frequency ventilation (HFV) were unable to show

any difference in survival, need for inhaled nitric oxide (iNO), duration of mechanical ventilation or oxygen requirement at discharge. The study by Derraugh *et al*⁴⁹ was based on experience at a single non-ECLS centre over a 25-year period. The HFV group included patients managed with both high-frequency jet ventilation and HFOV. A Japanese CDH Study Group analysis compared 250 HFOV with 77 CMV CDH patients.⁵⁰ Both studies suggested that physicians are more likely to choose HFV in sicker, higher-risk patients.

Individual, single-centre retrospective studies have demonstrated that high-frequency positive pressure ventilation,⁵¹ neurally adjusted ventilatory assist^{52 53} and heliox admixture with oxygen⁵⁴ hold some promise for future CDH management.

Fundamentals of haemodynamic support

In the setting of haemodynamic instability, treatment to optimise perfusion is centred around very judicious fluid resuscitation and early inotropic support to prevent pulmonary oedema. Indeed, ventricular dysfunction is a major contributor to persistent hypotension which will only be exacerbated by excessive fluid resuscitation. While the choice of inotropic agent depends on the clinical state of the infant with CDH, dopamine, epinephrine and norepinephrine are still considered the first-line choices for cardiac or vasopressor support.⁵⁵ Higher dosing of epinephrine may cause adverse events such as tachyarrhythmia, hyperglycaemia and lactic acidosis due to a dose-dependent shift from beta to alphareceptor agonist. Norepinephrine only has vasomotor effects and increasing afterload could further impair already precarious cardiac function. Furthermore, norepinephrine may also potentially increase pulmonary arterial resistance. While there is some recent evidence suggesting that dopamine may be an inferior choice based on experience extrapolated from infants with non-CDH persistent pulmonary hypertension,⁵⁶ dopamine is still the most extensively used inotropic medication in the neonatal literature, and possesses a well-documented safety profile.⁵⁷ As such, there is no conclusive evidence demonstrating the superiority of lesser-studied agents over dopamine in the population with CDH. However, vasopressin is showing promise in supporting systemic haemodynamics in catecholamine-resistant shock states without affecting pulmonary haemodynamics based on a small, retrospective study of 13 infants with CDH.58 Cardiovascular management, as well as the introduction, discontinuation and precise titration of each agent, should occur within a framework of targeted haemodynamic management. Treatment will need to be individualised to meet the unique requirements and responses of each neonate and their specific cardiovascular status (table 4).

There is accumulating evidence that the underlying cardiovascular phenotype may vary among different patients with CDH.

Table 3 Unchanged recommendations regarding ventilation in CDH ^{4/49-54}		
Unchanged recommendations	Strength of consensus	Level of evidence
3.1 All newborns with CDH who require respiratory support should be intubated (for assisted ventilation) immediately after birth.	4	C-EO
3.2 A T-piece on the bag–valve mask, or a ventilator, should be used to rigorously avoid a peak inspiratory pressure (PIP) greater than 25 cm H_2O from the first breaths onwards in all newborns with CDH.	4	B-NR
3.3 Gentle intermittent mandatory ventilation (IMV) should be the initial mode of ventilation for all newborns with CDH requiring respiratory support. High-frequency oscillatory ventilation or high-frequency jet ventilation should be used as rescue therapy when the PIP required to control hypercapnia using IMV exceeds 25 cm H ₂ O.	4	B-R
3.4 An arterial pCO_2 (partial pressure of carbon dioxide) between 45 and 60 mm Hg and a pH between 7.25 and 7.40 should be targeted in all newborns with CDH.	4	B-NR
3.5 Supplemental oxygen should be titrated to achieve a preductal saturation of at least 85%, but not >95%.	4	C-EO
CDH, congenital diaphragmatic hernia; EO, expert opinion; NR, non-randomised; R, randomised.		

47.40 54

Table 4 Unchanged recommendations regarding the fundamentals of haemodynamic support in CDH ⁶⁵	67	
Unchanged recommendations	Strength of consensus	Level of evidence
4.1 If poor perfusion persists, cardiac function should be assessed by echocardiography.	4	B-NR
4.2 Hydrocortisone should be used to treat hypotension that responds inadequately to intravenous volume and vasopressor therapy.	4	B-NR
Updated recommendations	Strength of consensus	Level of evidence
Updated recommendations 4.3 Treatment of poor perfusion (any combination of capillary refill >3 s, lactate >3 mmol/L, urine output <1 mL/kg/hour) and blood pressure below norms for age should include:	Strength of consensus 4	Level of evidence B-NR

This phenotype may evolve during the early acute phase of hospital admission, underscoring the need for continuous, multidisciplinary vigilance and the utilisation of multimodal clinical information that includes bedside echocardiography.^{59 60} Nevertheless, although diverse phenotypes have been documented, no trials within CDH cohorts have delineated the benefits of employing specific cardiovascular management strategies for acute pulmonary hypertension, right ventricular dysfunction, left ventricular dysfunction or biventricular dysfunction in this population. Hence, clinicians should tailor their therapy based on their best assessment of the patient's underlying physiology.^{61–63}

Acute kidney injury (AKI) is defined and staged using the Neonatal Modified Kidney Disease: Improving Global Outcomes⁶⁴ Serum Creatinine criteria. A few retrospective studies confirmed that AKI is common among infants with CDH.^{65–67} Among those with AKI, survival in these series ranged from 37% to 47%, and an increasing stage of AKI was associated with decreased survival. The authors found that AKI in patients with CDH was associated with prenatal risk factors, including lower antenatal lung volumes, liver herniation and postnatal factors such as vancomycin, corticosteroids and diuretic use, abdominal closure surgery, hypotension and elevated plasma-free haemoglobin. The situation is further complicated in patients receiving ECLS who are prone to fluid overload and a systemic inflammatory response that can also lead to AKI. Infants who remain unstable despite fluid and vasopressor therapy should receive hydrocortisone as well as echocardiographic assessment of cardiac function.

The role of echocardiography in CDH

Echocardiography is recommended shortly after birth, not only to verify suspected cardiac anomalies based on fetal echocardiography but also to (a) assess cardiac dimensions and ventricular

function, (b) estimate pulmonary arterial pressures, (c) assess for shunt physiology and (d) guide/adjust cardiovascular support. A minimum of two standardised echocardiograms are recommended. The first should occur within the first 24-48 hours of life (or preoperatively), with earlier evaluation recommended for high-risk infants or in the context of severe postnatal cardiorespiratory instability as it may dictate additional interventions or the timing of surgery. This may be particularly important in anticipation of ECLS candidacy.^{68 69} Interestingly, Yang et al⁶⁸ demonstrated reduced inotrope usage, lower ECLS rates, repair at earlier age and improved survival using a care bundle that deferred echocardiography until after 24 hours (or alternatively a time-limited assessment) to avoid excessive manipulation during the critical first 24 hours of physiological transition. The second echocardiogram should occur at 2-3 weeks of life, to assess for persistence of pulmonary hypertension or cardiac dysfunction. Additional studies may be conducted as clinically indicated (eg, pre-surgery or pre-discharge). This is especially relevant in the presence of significant pulmonary hypertension or cardiac dysfunction since this has been associated with adverse outcomes and may affect surgical and anaesthetic preparation.⁷⁰⁻⁷² Two single-centre studies highlight a possible prognostic role for pulmonary artery acceleration time to right ventricular ejection time (PAAT/ET) for early risk assessment in neonates with CDH. PAAT/ET values at the baseline echocardiogram are significantly lower in ECLS patients compared with non-ECLS patients. Additionally, ECLS non-survivors demonstrate lower PAAT/ ET values at 5-7 days of life when compared with ECLS survivors.^{73 74} These results suggest the utility of echocardiography at 5-7 days of life during ECLS support (table 5).

The measurement of brain natriuretic peptide (BNP) or N-terminal BNP may serve as adjunct biomarkers to detect underlying cardiac strain⁷⁵; increasing trends in these biomarkers have been

Table 5 Updated and new recommendations regarding the use of echocardiography in CDH ⁶⁸⁻⁷⁷		
Updated recommendations	Strength of consensus	Level of evidence
5.1 A minimum of two standardised echocardiograms should be performed, one within 24–48 hours of life (or preoperatively) and another at 2–3 weeks of life, to assess pulmonary hypertension and cardiac function. Additional studies may be conducted as clinically indicated.	4	B-NR
5.2 While initial echocardiography may be deferred after 24 hours to avoid excessive manipulation during the critical period of pulmonary vascular adaptation, early (<24 hours) echocardiography should be considered in the context of severe cardiorespiratory instability.	4	B-NR
New recommendation	Strength of consensus	Level of evidence
5.3 Repeat echocardiography on days of life 5–7, especially when on ECLS support, may be indicated to assess progression or improvement of pulmonary hypertension.	4	C-LD
CDH, congenital diaphragmatic hernia; LD, limited data; NR, non-randomised.		

 Table 6
 Updated recommendations regarding the role of prostaglandin E1 (PGE1) in the medical management of pulmonary hypertension associated with CDH^{78 79}

Updated recommendations	Strength of consensus	Level of evidence
6.1 PGE1 infusions should be used:a. If pulmonary or systemic blood flow is dependent on patency of the ductus arteriosus.b. In the presence of a concomitant anatomical cardiac lesion.	4	B-NR
 6.2 PGE1 infusions may be considered: a. In the presence of supra-systemic right ventricular pressures. b. In the presence of right ventricular failure. c. If right-to-left ductal shunting exceeds left-to-right shunting. 	4	C-LD
6.3 PGE1 should be considered to maintain ductal patency in CDH if there is left ventricular dysfunction or functional aortic atresia in the context of systemic right ventricular or pulmonary artery pressures.	4	C-EO
CDH, congenital diaphragmatic hernia; EO, expert opinion; LD, limited data; NR, non-randomised.		

associated with adverse CDH outcomes (death or respiratory support at 56 days of life).^{76 77} However, institutional availability of these markers may vary and there is a paucity of data indicating improvement of outcomes solely based on biomarker surveillance.

The role of prostaglandins in the management of CDHassociated pulmonary hypertension

Two small, retrospective studies reviewed the impact of prostaglandin E1 (PGE1) in the management of severe pulmonary hypertension in CDH and were the basis for changes to existing recommendations. Le Duc *et al* noted improvement in preductal and post-ductal saturations, as well as increased ductal blood flow and a reduction in fractional inspired oxygen with PGE1.⁷⁸ Lawrence *et al*⁷⁹ demonstrated improved echocardiographic indices as well as reduced BNP levels in 57 patients with PGE1.⁷⁹ Both studies supported the use of PGE1 in the context of a restrictive ductus arteriosus, severe pulmonary hypertension and impending right ventricular failure (table 6).

The use of 'targeted' pulmonary vasodilation in the management of CDH-associated pulmonary hypertension

The use of targeted pulmonary vasodilator therapy is recommended in the context of CDH-associated pulmonary hypertension when standard cardiorespiratory manoeuvres fail to maintain adequate oxygenation or cardiac function. iNO may be considered as part of the treatment regimen but only in the context of demonstrable echocardiographic and clinical evidence of improvement, which, if lacking, should lead to its cessation. Milrinone is a lusitropic medication that theoretically enhances diastolic function while also causing pulmonary and systemic vascular dilation. It undergoes renal excretion and can offer assistance to a compromised left ventricle. Milrinone is recommended for its pulmonary arterial vasodilator properties based on experience extrapolated from non-CDH, cardiac infants with pulmonary hypertension,¹ with caution for its use in the context of hypotension. The results of an ongoing RCT should clarify milrinone use in the population with CDH.⁸⁰ Prostaglandins (such as treprostinil and epoprostenol) and vasopressin⁸¹ may be considered as rescue therapy for pulmonary hypertension in newborns with CDH prior, during or after ECLS.^{77 82–84} Responders to these therapies have been reported, although it should not delay the initiation of other life-saving strategies (such as ECLS) in infants with severe hypoxic respiratory failure already meeting criteria (table 7).

The role of ECLS in the management of CDH

A recent guideline statement from the Extracorporeal Life Support Organization (ELSO) was published without clear adherence to GRADE methodological standards.⁶⁹ ELSO generated 26 recommendations in relation to CDH management, many of which overlap considerably with recommendations included here. The Collaborative's author group specifically endorses the ELSO indications for initiation of ECLS based on hypoxic or hypercapnic respiratory failure, circulatory failure or acute clinical deterioration⁶⁹ (table 8).

There continues to be sparse evidence that ECLS confers a survival advantage in CDH. A large retrospective cohort study demonstrated that overall mortality was higher when ECLS was used in CDH. A survival advantage was only observed in a

hypertension is a stable		
Unchanged recommendations	Strength of consensus	Level of evidence
7.1 In the context of echocardiographic confirmation of supra-systemic pulmonary arterial hypertension in the absence of left ventricular dysfunction, a trial of inhaled nitric oxide (iNO) should be used, providing that lung recruitment is adequate. If there is no iNO response based on echocardiographic assessment or other parameters (clinical or laboratory), iNO should be stopped.	4	B-NR
7.2 Milrinone should be used to treat cardiac dysfunction, particularly if it is associated with pulmonary hypertension.	4	B-NR
7.3 The use of sildenafil may be considered in patients with refractory pulmonary hypertension (ie, unresponsive to iNO) or as an adjunct when weaning iNO.	3	B-NR
New recommendation	Strength of consensus	Level of evidence
7.4 The use of prostacyclin (such as treprostinil and epoprostenol) may be considered as rescue therapy prior, during or after ECLS in infants with severe and refractory pulmonary hypertension.	3	C-LD
CDH, congenital diaphragmatic hernia; ECLS, extracorporeal life support; LD, limited data; NR, non-randomised.		

 Table 7
 Updated and new recommendations regarding targeted pulmonary vasodilation in the management of CDH-associated pulmonary hypertension

 hypertension
 77.82-84.155

Puligandla P, et al. Arch Dis Child Fetal Neonatal Ed 2023;0:F1-F14. doi:10.1136/archdischild-2023-325865

Table 9 Unchanged and new recommendations regarding surgical readiness criteria for CDH ^{94–96}		
Unchanged recommendations	Strength of consensus	Level of evidence
9.1 The following criteria should be met prior to surgery: urine output >1 mL/kg/hour, FiO ₂ <0.5, preductal oxygen saturation between 85% and 95%, normal mean arterial pressure for gestational age, lactate <3 mmol/L and estimated pulmonary artery pressures less than systemic.	4	B-NR
9.2 Surgery should be reconsidered if a patient fails to meet surgical readiness criteria after 2 weeks.	4	C-LD
New recommendation	Strength of consensus	Level of evidence
9.3 In patients who have achieved physiological stability, there is no benefit in delaying operative repair.	4	C-LD
CDH, congenital diaphragmatic hernia: FiO., fractional inspired oxygen: LD, limited data; NR, non-randomised.		

subgroup of high-risk patients and only in high-volume centres. This and another small centre series suggest that high-risk patients with CDH might have lower mortality when ECLS is used.^{85 86} Two recent studies have considered the cost and societal implications of prolonged ECLS runs for CDH, arguing strongly against indefinite run length.^{87 88}

There is accruing evidence regarding current age (<34 weeks' gestation) and weight (<1.7-2 kg) exclusion criteria for ECLS, suggesting they be reconsidered under special circumstances. A systematic review of all premature patients treated with ECLS demonstrated that survival rates for premature babies with CDH supported with ECLS, although rarely offered, were similar to survival in the prematurely born infant with CDH without ECLS.^{89 90} The most recent ELSO dataset demonstrates an overall survival of 50% (n=7564), with a modest decline in infants <34 weeks' GA (44%); survival is even lower in those infants <2 kg (29%). Given the high risk of death and neural impairment associated with ECLS use in this population,⁹¹ the provision of ECLS to populations with CDH with traditional relative contraindications should remain experimental and only contemplated at high-volume ECLS centres.

Two recent investigations reviewed repeat ECLS for CDH, with a combined total n=31.⁹² ⁹³ Both papers endorsed repeat ECLS, with cannulation criteria remaining similar to the criteria used for the index cannulation. While it is clear that patients with CDH who undergo ECLS have inferior developmental/cognitive outcomes than a non-ECLS cohort, it is unknown whether a second run further compounds this impairment.

Surgical readiness criteria

Delaying surgical repair until 'physiological stability' has been achieved (usually interpreted as cardiorespiratory function and oxygenation sufficient to avoid lactic acidosis with evidence of subsystemic pulmonary artery pressure) appears to optimise CDH outcome. A recent retrospective, singlecentre study of 158 neonates with CDH studied temporal trends in oxygenation index (OI) as a proxy for physiological

Table 8	Updated recommendation regarding the use of ECLS in
CDH ^{69 85-9}	93

Updated recommendation	Strength of consensus	Level of evidence
8.1 ECLS may be considered in populations with CDH with traditional size/age or comorbidity contraindications under special circumstances.	2	C-LD

CDH, congenital diaphragmatic hernia; ECLS, extracorporeal life support; LD, limited data.

stability. OI measurements in the first 24 hours of life corresponded with mean preoperative OI values suggesting that early OI could be used to determine the timing of operative repair in CDH. An OI <9.4 correlated with survival, and any delay in surgical repair after an OI of <9.4 was achieved led to increased ventilator days and delayed hospital discharge.⁹⁴ These findings suggest that there is no benefit to delaying surgical repair once clinical stability has been attained. A smaller prospective study from China (n=30) also concluded that delaying thoracoscopic repair beyond 48 hours was of no benefit for mild-moderate CDH (LHR >1)⁹⁵ (table 9).

One additional study demonstrated that meaningful survival can be achieved in high-risk patients and reinforced the importance of avoiding non-repair whenever possible. In their study exploring differences in outcomes at high-volume centres, Harting *et al*, noted that centres that had low rates of non-repair had higher survival than those centres with high rates of non-repair (suggesting survivability of repaired, highest-risk patients).⁹⁶

Options for non-primary repair

Although there is no clearly preferred prosthetic (synthetic or biological) patch material for the repair of defects not amenable to primary repair,⁹⁷⁻¹⁰¹ recent studies describe success with defect closure using autologous muscle flaps. Two studies of 97 (in aggregate) neonates with CDH with large defects closed with oblique muscle flaps recorded 5-year recurrence rates of 3% and 3.5%.¹⁰² ¹⁰³ Rates of repair on ECLS were similar to those undergoing patch repair (39% vs 31%) and complication rates, including bleeding on ECLS, were similar between groups—an observation made separately in another publication.¹⁰⁴ Three earlier publications reported an additional 50 muscle flap repairs, from which there were 3 reported recurrences (6%).¹⁰⁵⁻¹⁰⁷ Long-term musculoskeletal outcomes (scoliosis, chest wall deformities) were equivalent in patch versus muscle flap groups¹⁰⁷ (table 10).

Open versus minimally invasive repair

Any consideration of a minimally invasive approach to CDH repair must acknowledge its higher recurrence rate compared with open and the importance of selecting patients based on favourable ventilatory and pulmonary hypertension preoperative parameters. Five recent cohort studies (totalling 137 patients) have reported recurrence rates of 7–21% after thoracoscopic repair (TR) of neonatal CDH.^{108–111} Low-quality evidence suggests that use of a biological mesh underlay for primary and prosthetic mesh repairs reduces both the risk of recurrence and adhesive bowel obstruction¹¹² (table 11).

An earlier multicentre study of 37 infants undergoing TR identified preoperative OI >3 as independently predictive of

Table 10 Unchanged and new recommendations regarding non-primary repair in CDH ^{97–104}		
Unchanged recommendation	Strength of consensus	Level of evidence
10.1 For diaphragmatic defects that are not amenable to primary repair, oversized, tension-free polytetrafluoroethylene (GORE-TEX) patches should be used.	4	C-LD
New recommendation	Strength of consensus	Level of evidence
10.2 Oblique muscle flap repair may be considered if technical expertise with the procedure exists.	4	C-LD
CDH, congenital diaphragmatic hernia; LD, limited data.		

treatment failure, defined as need for conversion or the development of a serious postoperative complication.¹¹³

Surgical repair on ECLS

Survival to discharge for infants with CDH who require ECLS is approximately 50%, with single centres reporting rates approaching 70%.⁸⁶ Complications of repair on ECLS are predominantly metabolic, circuit related or haemorrhagic (including surgical site), which occurs in 25% of cases and is only partially offset by surgical technique and modified anticoagulation.¹¹⁴ CDH non-repair rates in infants who receive ECLS are approximately 15%,¹¹⁵ a rate which could be reduced by an on-ECLS repair strategy (table 12).

Two large registry studies have investigated the relationship between on or after ECLS CDH repair and survival. A Congenital Diaphragmatic Hernia Study Group (CDHSG) study of propensity-matched patients showed a survival advantage (HR 0.54 (0.38, 0.77)) to repair on ECLS, with high-volume centres disproportionately represented in this group.¹¹⁶ However, if non-repairs were excluded, the survival benefit was reversed. An ELSO registry study of >2200 propensity-matched patients which excluded non-repairs demonstrated a threefold increased mortality and a run duration-dependent increased risk of severe neurological injury in the on-ECLS repair group.¹¹⁷ A comparative study from Ann Arbor demonstrated the highest survival rate (94%) in infants who were decannulated prior to repair.¹¹⁸

Studies have explored outcomes according to early or late repair on ECLS with conflicting results. Two studies from CDHSG have shown improved survival with early repair, defined as <72 hours, or within the shortest time to repair quartile range.¹¹⁶ ¹¹⁹ In addition, a single-institution study of 33 patients comparing repair within 24 hours of cannulation versus repair between 24 hours and 72 hours demonstrated improved survival in the <24-hour group.¹²⁰ Conversely, a single-institution study comparing early (≤ 5 days) versus late (> 5 days) repair protocols demonstrated that early repair was independently predictive of mortality (HR 3.48, CI 1.28 to 9.45).¹¹⁸

A single-centre study recently reported 2-year neurocognitive outcomes in CDH survivors repaired on ECLS versus after or without ECLS. While the entire CDH cohort had neurocognitive scores that were significantly lower than population norms in all domains, those repaired on ECLS had lower cognitive and motor scores compared with those repaired after ECLS.¹²¹

These analyses suggest that the relationship between survival and timing of repair relative to the ECLS run is confounded by whether mortality associated with non-repair (which will be more likely in high-risk patients) is excluded or attributed to the after-ECLS group. Patients with adverse prenatal predictors who go onto ECLS with severe cardiopulmonary derangement represent the greatest risk of non-repair. Consideration should be given to early repair in these patients.

Management of gastro-oesophageal reflux in CDH

Gastro-oesophageal reflux disease (GERD) is extremely prevalent with formal impedance testing demonstrating persistence of GERD in >60% of infants with CDH beyond 1 year of age.¹²² This has led to consideration of 'preventative' fundoplication, which was explored in a prospective, multi-institutional study from France in which select institutions performed preventative fundoplication (n=27; 11%) versus no fundoplication for

Table 11 Updated recommendation regarding the type of surgical repair in CDH ¹⁰⁰⁻¹¹²		
Updated recommendation	Strength of consensus	Level of evidence
 11.1 Although recurrence rates for minimally invasive repairs of CDH continue to be higher than open repairs, minimally invasive repair may be considered in patients: a. Who easily achieve preoperative ventilatory targets. b. With infrasystemic pulmonary artery pressures and normal cardiac function. c. If the surgical team is technically proficient and the anaesthetic team is experienced and able to continuously monitor and manage intraoperative hypercarbia and acidosis. 	3	C-LD
CDH, congenital diaphragmatic hernia; LD, limited data.		
Table 12 Unchanged and updated recommendations regarding surgical repair on ECLS ^{86 114 116–120}		
Unchanged recommendation	Strength of consensus	Level of evidence
12.1 For patients on ECLS, surgery should be avoided until after decannulation.	3	B-NR
Updated recommendation	Strength of consensus	Level of evidence
12.2 Patients with a low probability of survival based on prenatal predictors or the severity of cardiopulmonary derangement at cannulation are at risk of failure to wean and may benefit from early repair.	3	B-NR
ECLS, extracorporeal life support; NR, non-randomised.		

 Table 13
 Updated recommendation regarding the management of gastro-oesophageal reflux in CDH^{122 123}

5		
Updated recommendation	Strength of consensus	Level of evidence
13.1 Routine 'preventative' fundoplication is not indicated at the time of diaphragm repair.	4	B-NR

CDH, congenital diaphragmatic hernia; NR, non-randomised.

high-risk cases at the time of CDH repair with prosthetic patch.¹²³ The rate of redo fundoplication in the preventative group was higher than the rate of subsequent fundoplication for medically refractory GERD in the no fundoplication group. Moreover, preventative fundoplication patients experienced significantly longer hospital stays and additional morbidity including oral aversion and the need for tube feeding >6 months. Thus, there is no advantage to fundoplication at the time of CDH repair; it should only be considered in the context of failed medical management (table 13).

Long-term follow-up in CDH

Studies continue to deepen our understanding of the long-term sequelae of CDH beyond the initial NICU admission along a number of biophysical domains, including cardiopulmonary,^{124–131} gastrointestinal/nutrition/growth,^{127–132–136} neurodevelopmental,^{126–128–132–137–140} musculoskeletal^{128–141} and all-cause late mortality.¹⁴² These findings reinforce the importance of longitudinal follow-up by a team with CDH-specific expertise in accordance with the American Academy of Pediatrics guidelines. Finally, there is a significant knowledge gap in the optimal transitioning of patients with CDH from a paediatric to adult care context (table 14).

Pain, analgesia and neuromuscular blockade management in CDH

A systematic review and subsequent clinical guidelines for analgesia and sedation in term and near-term infants requiring mechanical ventilation made recommendations for infants with severe respiratory failure, which apply to patients with CDH: (1) a validated pain score¹⁴³ should be used to titrate opioid dose (strong recommendation); (2) fentanyl as a continuous infusion (CI) is preferred over morphine in presence of hypotension or renal failure (conditional recommendation); (3) when tolerance with one agent has occurred, opioids should be rotated (conditional recommendation).¹⁴⁴ Use of fentanyl as a CI is also supported by a neonatal RCT that demonstrated favourable pharmacokinetics and equivalent pain scores versus intermittent bolus dosing¹⁴⁵ (table 15).

There is increasing evidence supporting use of intravenous and enteral acetaminophen or paracetamol in postoperative CDH management. Its use was reported in 48% of post-repair patients in the Children's Hospital Neonatal Consortium (CHNC) CDH Database.¹⁴⁶ A Cochrane review demonstrated that use of paracetamol decreased opioid utilisation in infants undergoing painful procedures or following invasive surgery.¹⁴⁷ An RCT and subsequent implementation cohort study demonstrated reduced opioid utilisation and equivalent pain scores in patients undergoing non-cardiac surgery managed postoperatively with opioids combined with either paracetamol or placebo.¹⁴⁸ ¹⁴⁹ Å recent quality improvement study demonstrated that a standardised protocol which combined intravenous acetaminophen, education and standardised pain handover reduced postoperative opioid use and duration of intubation in patients with CDH.¹⁵⁰

Table 14 Updated and new recommendations regarding long-term follow-up in CDH ^{124–142}		
Updated recommendations	Strength of consensus	Level of evidence
14.1 We recommend standardised multidisciplinary follow-up for children with CDH to provide surveillance and screening, optimal and timely diagnosis and clinical care adjusted to the level of risk.	4	B-NR
14.2 We recommend identifying the subset of CDH survivors at high risk of long-term morbidity as comprising those infants and children who require extracorporeal life support, who have been repaired with a patch or muscle flap or who require respiratory support at 30 days of life.	4	B-NR
New recommendation		
14.3 Where possible, the following members should constitute the longitudinal multidisciplinary follow-up team for CDH survivors: paediatrics, developmental paediatrics, nutrition/dietary sciences, paediatric surgery, paediatric respirology and paediatric cardiology. Additional subspecialties or allied health professionals should be engaged as needed.	4	B-NR
CDH, congenital diaphragmatic hernia: NR, non-randomised.		

Table 15 New recommendations regarding pain, analgesia and neuromuscular blockade management	in CDH ^{143–147 149 150}	
New recommendations	Strength of consensus	Level of evidence
15.1 All infants with CDH requiring mechanical ventilation should have personalised analgesic/sedation management that is guided by a clinically applicable and appropriately validated pain/sedation scoring tool.	4	B-NR
15.2 Intravenous opioid (morphine or fentanyl) should be administered as a CI in combination with a short-acting benzodiazepine, which may reduce opioid dosing requirements.	3	B-NR
15.3 Routine neuromuscular blockade should be avoided in preoperative stabilisation, but its use should be considered for infants with escalating severity of pulmonary hypertension or if ventilation targets are difficult to achieve.	4	C-LD
15.4 Postoperative use of intravenous acetaminophen should be considered as a means of reducing overall opioid requirements.	3	B-NR
CDH, congenital diaphragmatic hernia; CI, continuous infusion; LD, limited data; NR, non-randomised.		

There is little evidence to address the role of neuromuscular relaxation in preoperative stabilisation of infants with CDH. A prospective cohort study of 15 mechanically ventilated infants with CDH demonstrated a significant decrease in compliance after the administration of pancuronium.¹⁵¹ Furthermore, a multicentre registry review found that prolonged use of sedation and/or muscle relaxation was associated with longer lengths of stay and a higher mortality rate, which mirrors findings from the CHNC Database where the use of neuromuscular relaxation pre-repair occurred with nearly twice the frequency in non-survivors versus survivors (87% vs 48%).¹⁴⁶ These data appear to suggest that neuromuscular paralysis is added when patients with severe disease fail to stabilise.¹⁴⁶

DISCUSSION AND CONCLUSION

In creating this update, the Canadian CDH Collaborative has sought to maintain its CPG as a 'living document' by updating and adding recommendations to care areas where new evidence has emerged. This updated CPG provides an evidence-based and consensus-driven management framework that aims to improve outcomes and encourage synthesis of new knowledge through targeted research and quality improvement efforts.

Author affiliations

¹Department of Pediatric Surgery, Harvey E. Beardmore Division of Pediatric Surgery, Montreal Children's Hospital of the McGill University Health Centre, Montreal, Quebec, Canada

²Department of Surgery, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada

³Department of Pediatric Surgery, Harvey E. Beardmore Division of Pediatric Surgery, Montreal Children's hospital of the McGill University Health Centre, Montreal, Quebec, Canada

⁴Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada

⁵Neonatology, Montreal Children's Hospital of the McGill University Health Centre, Montreal, Quebec, Canada

⁶Department of Surgery, Section of Pediatric Surgery, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada

⁷Department of Pediatrics and Child Health, Section of Neonatology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada ⁸Department of Pediatric Surgery, McMaster Children's Hospital, Hamilton, Ontario, Canada

⁹Department of Pediatrics, Division of Neonatology, Laval University, Quebec City, Quebec, Canada

¹⁰Department of Pediatric Surgery and Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada

¹¹Child Health Evaluative Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

¹²Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Ontario Fetal Centre, Toronto, Ontario, Canada

¹³Department of Anesthesia, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada

¹⁴Department of Surgery, Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

¹⁵Department of Surgery, Division of Pediatric General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Twitter Pramod Puligandla @DrPuligandla, Elena Guadagno @GuadagnoElena and Gabriel Altit @CardioNeo

Collaborators The Canadian Congenital Diaphragmatic Hernia Collaborative.

Contributors A three-member steering committee (PP, ES, RB) was formed to oversee the CDH Collaborative's guideline development process, to finalise the guideline panel membership and contributors to the literature reviews, to critically appraise all materials generated during the evidence review process, oversee the final guidelines endorsement process and prepare the manuscript. PP acted as guarantor. They were specifically involved in the preparation of sections on haemodynamics (PP), ECLS (RB), non-primary surgical repair (ES), type of surgical repair (ES), repair on ECLS (ES/PP), and pain control and analgesia (ES). EG was the research director for the project who oversaw its design, the literature search and screening, as well as the editing of the final revised version of the manuscript and supplemental materials. AD was involved with the literature search and abstract

screening, the critical appraisal and preparation of the section on surgery on ECLS, as well as the revision of the final submitted manuscript. OG was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on haemodynamics, as well as the revision of the final submitted manuscript. NA was involved with the critical appraisal and preparation of the sections on prenatal diagnosis and fetal therapy, as well as revision of the final submitted manuscript. GA was involved with the literature search and abstract screening, the critical appraisal and preparation of the sections on echocardiography, role of PGE and target pulmonary vasodilator therapy, as well as the revision of the final submitted manuscript. MB was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on surgical readiness, as well as the revision of the final submitted manuscript. SF was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on type of surgical repair, as well as the revision of the final submitted manuscript. SD was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on ventilation, as well as the revision of the final submitted manuscript. HF was involved with the critical appraisal and preparation of the section on gastro-oesophageal reflux as well as the revision of the final submitted manuscript. AH was involved with the literature search and abstract screening, the critical appraisal and preparation of the sections on echocardiography, role of PGE and target pulmonary vasodilator therapy, as well as the revision of the final submitted manuscript. RK was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on ECLS as well as the revision of the final submitted manuscript. MO was involved in the concept and design of the work, as the facilitator for our Delphi consensus process, as well as the revision of the final submitted manuscript. DP was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on role of ECLS, as well as the revision of the final submitted manuscript. GR was involved with the critical appraisal and preparation of the sections on prenatal diagnosis and fetal therapy, as well as the revision of the final submitted manuscript. MT was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on ventilation, as well as the revision of the final submitted manuscript. AZ was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on ECLS as well as the revision of the final submitted manuscript. PC was involved with the literature search and abstract screening, the critical appraisal and preparation of the section on longterm follow-up, as well as the revision of the final submitted manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplemental information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs

Pramod Puligandla http://orcid.org/0000-0003-2671-328X Elena Guadagno http://orcid.org/0000-0002-4616-9990 Gabriel Altit http://orcid.org/0000-0001-5141-0964 Martin Offringa http://orcid.org/0000-0002-4402-5299 Dylan Patel http://orcid.org/0000-0002-4533-4595

REFERENCES

- 1 The Canadian Congenital Diaphragmatic Hernia Collaborative, Puligandla PS, Skarsgard ED, et al. Diagnosis and management of congenital diaphragmatic hernia: a clinical practice guideline. CMAJ 2018;190:E103–12.
- 2 LaRusso K, Puligandla PS, Anna GS. The Canadian congenital diaphragmatic hernia collaborative mobile app: a national guideline implementation strategy. *Am J Perinatol* 2020;37:S66–70.
- 3 Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.
- 4 Garne E, Haeusler M, Barisic I, et al. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in 20 European regions. Ultrasound Obstet Gynecol 2002;19:329–33.

F11

- 5 Gallot D, Boda C, Ughetto S, *et al*. Prenatal detection and outcome of congenital diaphragmatic hernia: a French registry-based study. *Ultrasound Obstet Gynecol* 2007;29:276–83.
- 6 Lin AE, Pober BR, Adatia I. Congenital diaphragmatic hernia and associated cardiovascular malformations: type, frequency, and impact on management. *Am J Med Genet C Semin Med Genet* 2007;145C:201–16.
- 7 Zhu Q, High FA, Zhang C, et al. Systematic analysis of copy number variation associated with congenital diaphragmatic hernia. *Proc Natl Acad Sci USA* 2018;115:5247–52.
- 8 Kammoun M, Souche E, Brady P, *et al.* Genetic profile of isolated congenital diaphragmatic hernia revealed by targeted next-generation sequencing. *Prenat Diagn* 2018;38:654–63.
- 9 Schwab ME, Dong S, Lianoglou BR, et al. Exome sequencing of fetuses with congenital diaphragmatic hernia supports a causal role for NR2F2, PTPN11, and WT1 variants. Am J Surg 2022;223:182–6.
- Wild KT, Schindewolf E, Hedrick HL, et al. The genomics of congenital diaphragmatic hernia: a 10-year retrospective review. J Pediatr 2022;248:108–13.
- 11 Alfaraj MA, Shah PS, Bohn D, et al. Congenital diaphragmatic hernia: lung-to-head ratio and lung volume for prediction of outcome. Am J Obstet Gynecol 2011;205:43.
- 12 Jani J, Nicolaides KH, Keller RL, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 2007;30:67–71.
- 13 Oluyomi-Obi T, Kuret V, Puligandla P, et al. Antenatal predictors of outcome in prenatally diagnosed congenital diaphragmatic hernia (CDH). J Pediatr Surg 2017;52:881–8.
- 14 Mayer S, Klaritsch P, Petersen S, et al. The correlation between lung volume and liver herniation measurements by fetal MRI in isolated congenital diaphragmatic hernia: a systematic review and meta-analysis of observational studies. *Prenat Diagn* 2011;31:1086–96.
- 15 Mullassery D, Ba'ath ME, Jesudason EC, et al. Value of liver herniation in prediction of outcome in fetal congenital diaphragmatic hernia: a systematic review and metaanalysis. Ultrasound Obstet Gynecol 2010;35:609–14.
- 16 Abbasi N, Ryan G, Johnson A, et al. Reproducibility of fetal lung-to-head ratio in left diaphragmatic hernia across the North American fetal therapy network (Naftnet). Prenat Diagn 2019;39:188–94.
- 17 Peralta CFÅ, Cavoretto P, Csapo B, et al. Assessment of lung area in normal fetuses at 12–32 weeks. Ultrasound Obstet Gynecol 2005;26:718–24.
- 18 Senat M-V, Bouchghoul H, Stirnemann J, et al. Prognosis of isolated congenital diaphragmatic hernia using lung-area-to-head-circumference ratio: variability across centers in a national perinatal network. Ultrasound Obstet Gynecol 2018;51:208–13.
- 19 Cruz-Martinez R, Figueras F, Moreno-Alvarez O, et al. Learning curve for lung area to head circumference ratio measurement in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2010;36:32–6.
- 20 Russo FM, Cordier A-G, Basurto D, et al. Fetal endoscopic tracheal occlusion reverses the natural history of right-sided congenital diaphragmatic hernia: European multicenter experience. Ultrasound Obstet Gynecol 2021;57:378–85.
- 21 Deprest JA, Nicolaides KH, Benachi A, et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N Engl J Med 2021;385:107–18.
- 22 Kitano Y, Okuyama H, Saito M, et al. Re-evaluation of stomach position as a simple prognostic factor in fetal left congenital diaphragmatic hernia: a multicenter survey in Japan. Ultrasound Obstet Gynecol 2011;37:277–82.
- 23 Cordier A-G, Cannie MM, Guilbaud L, *et al.* Stomach position versus liver-to-thoracic volume ratio in left-sided congenital diaphragmatic hernia. *J Matern Fetal Neonatal Med* 2015;28:190–5.
- 24 Basta AM, Lusk LA, Keller RL, et al. Fetal stomach position predicts neonatal outcomes in isolated left-sided congenital diaphragmatic hernia. Fetal Diagn Ther 2016;39:248–55.
- 25 Abbasi N, Ryan G, Ruano R, et al. Interrater agreement for sonographic stomach position classification in fetal diaphragmatic hernia across the North American fetal therapy network. Prenat Diagn 2022;42:348–56.
- 26 Weller K, Peters NCJ, van Rosmalen J, *et al.* Prenatal stomach position and volume in relation to postnatal outcomes in left-sided congenital diaphragmatic hernia. *Prenat Diagn* 2022;42:338–47.
- 27 Jani J, Cannie M, Sonigo P, et al. Value of prenatal magnetic resonance imaging in the prediction of postnatal outcome in fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 2008;32:793–9.
- 28 Cannie M, Jani J, Chaffiotte C, et al. Quantification of intrathoracic liver herniation by magnetic resonance imaging and prediction of postnatal survival in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2008;32:627–32.
- 29 Ruano R, Lazar DA, Cass DL, et al. Fetal lung volume and quantification of liver Herniation by magnetic resonance imaging in isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2014;43:662–9.
- 30 Bebbington M, Victoria T, Danzer E, et al. Comparison of ultrasound and magnetic resonance imaging parameters in predicting survival in isolated Left-Sided congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2014;43:670–4.

- 31 Nasr A, Langer JC, Canadian Pediatric Surgery Network. Influence of location of delivery on outcome in neonates with congenital diaphragmatic hernia. J Pediatr Surg 2011;46:814–6.
- 32 Bouchghoul H, Dumery G, Russo FM, et al. Optimal gestational age at delivery in isolated left-sided congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2021;57:968–73.
- 33 DiFiore JW, Fauza DO, Slavin R, et al. Experimental fetal tracheal ligation reverses the structural and physiological effects of pulmonary hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 1994;29:248–56;
- 34 Harrison MR, Adzick NS, Flake AW, et al. Correction of congenital diaphragmatic hernia in utero VIII: response of the hypoplastic lung to tracheal occlusion. J Pediatr Surg 1996;31:1339–48.
- 35 Harrison MR, Keller RL, Hawgood SB, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med 2003;349:1916–24.
- 36 Deprest J, Gratacos E, Nicolaides KH, et al. Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet Gynecol 2004;24:121–6.
- 37 Jani JC, Nicolaides KH, Gratacós E, et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol 2009;34:304–10.
- 38 Ruano R, Yoshisaki CT, da Silva MM, et al. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2012;39:20–7.
- 39 Baschat AA, Rosner M, Millard SE, et al. Single-center outcome of fetoscopic tracheal balloon occlusion for severe congenital diaphragmatic hernia. Obstet Gynecol 2020;135:511–21.
- 40 Belfort MA, Olutoye OO, Cass DL, et al. Feasibility and outcomes of fetoscopic tracheal occlusion for severe left diaphragmatic hernia. Obstet Gynecol 2017;129:20–9.
- 41 Deprest JA, Benachi A, Gratacos E, et al. Randomized trial of fetal surgery for moderate left diaphragmatic hernia. N Engl J Med 2021;385:119–29.
- 42 Van Calster B, Benachi A, Nicolaides KH, et al. The randomized tracheal occlusion to accelerate lung growth (TOTAL)-Trials on fetal surgery for congenital diaphragmatic hernia: reanalysis using pooled data. Am J Obstet Gynecol 2022;226:560.
- 43 Luong C, Rey-Perra J, Vadivel A, *et al*. Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. *Circulation* 2011;123:2120–31.
- 44 Russo FM, Toelen J, Eastwood MP, et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 2016;71:517–25.
- 45 Russo FM, Benachi A, Van Mieghem T, et al. Antenatal sildenafil administration to prevent pulmonary hypertension in congenital diaphragmatic hernia (stop-PH): study protocol for a phase I/IIb Placenta transfer and safety study. *Trials* 2018;19:524.
- 46 Perlman JM, Wyllie J, Kattwinkel J, *et al.* Part 7: neonatal resuscitation: 2015 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations (Reprint). *Pediatrics* 2015;136 Suppl 2:S120–66.
- 47 Cochius-den Otter SCM, Horn-Oudshoorn EJJ, Allegaert K, et al. Routine intubation in newborns with congenital diaphragmatic hernia. *Pediatrics* 2020;146:e20201258.
- 48 Snoek KG, Capolupo I, van Rosmalen J, et al. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia. Ann Surg 2016;263:867–74.
- 49 Derraugh G, Levesque M, Schantz D, et al. High-frequency vs. conventional ventilation at the time of CDH repair is not associated with higher mortality and oxygen dependency: a retrospective cohort study. *Pediatr Surg Int* 2020;36:1275–80.
- 50 Fuyuki M, Usui N, Taguchi T, et al. Prognosis of conventional vs. high-frequency ventilation for congenital diaphragmatic hernia: a retrospective cohort study. J Perinatol 2021;41:814–23.
- 51 Gerall C, Wallman-Stokes A, Stewart L, et al. High-frequency positive pressure ventilation as primary rescue strategy for patients with congenital diaphragmatic hernia: a comparison to high-frequency oscillatory ventilation. Am J Perinatol 2021;16:16.
- 52 Kurland Y, Gurung K, Pallotto EK, et al. Neurally adjusted ventilatory assist in neonates with congenital diaphragmatic hernia. J Perinatol 2021;41:1910–5
- 53 Meinen RD, Alali YI, Al-Subu A, *et al*. Neurally-adjusted ventilatory assist can facilitate extubation in neonates with congenital diaphragmatic hernia. *Respir Care* 2021;66:41–9.
- 54 Wise AC, Boutin MA, Knodel EM, *et al*. Heliox adjunct therapy for neonates with congenital diaphragmatic hernia. *Respir Care* 2018;63:1147–53.
- 55 Siefkes HM, Lakshminrusimha S. Management of systemic hypotension in term infants with persistent pulmonary hypertension of the newborn: an illustrated review. Arch Dis Child Fetal Neonatal Ed 2021;106:446–55.
- 56 McNamara PJ, Giesinger RE, Lakshminrusimha S. Dopamine and neonatal pulmonary hypertension-pressing need for a better pressor? *J Pediatr* 2022;246:242–50.
- 57 Dempsey E, Rabe H. The use of cardiotonic drugs in neonates. *Clin Perinatol* 2019;46:273–90.
- 58 Acker SN, Kinsella JP, Abman SH, et al. Vasopressin improves hemodynamic status in infants with congenital diaphragmatic hernia. J Pediatr 2014;165:53–8.

- 59 Bhombal S, Patel N. Diagnosis & management of pulmonary hypertension in congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2022;27:101383.
- 60 Patel N, Massolo AC, Kraemer US, et al. The heart in congenital diaphragmatic hernia: knowns, unknowns, and future priorities. Front Pediatr 2022;10:890422.
- 61 Giesinger RE, McNamara PJ. Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology. *Semin Perinatol* 2016;40:174–88.
- 62 Joynt C, Cheung PY. Treating hypotension in preterm neonates with vasoactive medications. *Front Pediatr* 2018;6:86.
- 63 Ruoss JL, McPherson C, DiNardo J. Inotrope and vasopressor support in neonates. *NeoReviews* 2015;16:e351–61.
- 64 Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis 2013;61:649–72.
- 65 Arattu Thodika FMS, Dassios T, Deep A, *et al*. Acute kidney injury in infants with congenital diaphragmatic hernia. *J Perinatol* 2022;42:925–9.
- 66 Ryan A, Gilhooley M, Patel N, et al. Prevalence of acute kidney injury in neonates with congenital diaphragmatic hernia. *Neonatology* 2020;117:88–94.
- 67 Liberio BM, Brinton JT, Gist KM, et al. Risk factors for acute kidney injury in neonates with congenital diaphragmatic hernia. J Perinatol 2021;41:1901–9.
- 68 Yang MJ, Fenton S, Russell K, *et al*. Left-sided congenital diaphragmatic hernia: can we improve survival while decreasing ECMO? *J Perinatol* 2020;40:935–42.
- 69 Guner Y, Jancelewicz T, Di Nardo M, et al. Management of congenital diaphragmatic hernia treated with extracorporeal life support: interim guidelines consensus statement from the extracorporeal life support organization. ASAIO J 2021;67:113–20.
- 70 Ferguson DM, Gupta VS, Lally PA, *et al*. Early, postnatal pulmonary hypertension severity predicts inpatient outcomes in congenital diaphragmatic hernia. *Neonatology* 2021;118:147–54.
- 71 Altit G, Bhombal S, Van Meurs K, et al. Ventricular performance is associated with need for extracorporeal membrane oxygenation in newborns with congenital diaphragmatic hernia. J Pediatr 2017;191:28–34.
- 72 Patel N, Lally PA, Kipfmueller F, et al. Ventricular dysfunction is a critical determinant of mortality in congenital diaphragmatic hernia. Am J Respir Crit Care Med 2019;200:1522–30.
- 73 Kipfmueller F, Akkas S, Pugnaloni F, et al. Echocardiographic assessment of pulmonary hypertension in neonates with congenital diaphragmatic hernia using pulmonary artery flow characteristics. J Clin Med 2022;11:3038.
- 74 Aggarwal S, Shanti C, Agarwal P, et al. Echocardiographic measures of ventricularvascular interactions in congenital diaphragmatic hernia. *Early Hum Dev* 2022;165:105534.
- 75 Gupta VS, Patel N, Kipfmueller F, et al. Elevated proBNP levels are associated with disease severity, cardiac dysfunction, and mortality in congenital diaphragmatic hernia. J Pediatr Surg 2021;56:1214–9.
- 76 Avitabile CM, Wang Y, Zhang X, et al. Right ventricular strain, brain natriuretic peptide, and mortality in congenital diaphragmatic hernia. Ann Am Thorac Soc 2020;17:1431–9.
- 77 Guslits E, Steurer MA, Nawaytou H, et al. Longitudinal B-type natriuretic peptide levels predict outcome in infants with congenital diaphragmatic hernia. J Pediatr 2021;229:191–8.
- 78 Le Duc K, Mur S, Sharma D, *et al*. Antenatal assessment of the prognosis of congenital diaphragmatic hernia: ethical considerations and impact for the management. *Healthcare (Basel)* 2022;10:1433.
- 79 Lawrence KM, Berger K, Herkert L, et al. Use of prostaglandin E1 to treat pulmonary hypertension in congenital diaphragmatic hernia. J Pediatr Surg 2019;54:55–9.
- 80 Lakshminrusimha S, Keszler M, Kirpalani H, et al. Milrinone in congenital diaphragmatic hernia - a randomized pilot trial: study protocol, review of literature and survey of current practices. *Matern Health Neonatol Perinatol* 2017;3:27.
- 81 Joshi S, Quinones Cardona V, Menkiti OR. Use of vasopressin in persistent pulmonary hypertension of the newborn: a case series. SAGE Open Med Case Rep 2022;10:2050313X221102289.
- 82 Lawrence KM, Hedrick HL, Monk HM, et al. Treprostinil improves persistent pulmonary hypertension associated with congenital diaphragmatic hernia. The Journal of Pediatrics 2018;200:44–9.
- 83 Carpentier E, Mur S, Aubry E, et al. Safety and tolerability of subcutaneous treprostinil in newborns with congenital diaphragmatic hernia and life-threatening pulmonary hypertension. J Pediatr Surg 2017;52:1480–3.
- 84 Jozefkowicz M, Haag DF, Mazzucchelli MT, et al. Neonates effects and tolerability of treprostinil in hypertension with persistent pulmonary. Am J Perinatol 2020;37:939–46.
- 85 Jancelewicz T, Langham MR, Brindle ME, et al. Survival benefit associated with the use of extracorporeal life support for neonates with congenital diaphragmatic hernia. Ann Surg 2022;275:e256–63.
- 86 Gien J, Kinsella JP, Behrendt NJ, et al. Improved survival for infants with severe congenital diaphragmatic hernia. J Perinatol 2022;42:1189–94.
- 87 Zheng H, Gong C, Chapman R, et al. Cost-effectiveness analysis of extended extracorporeal membrane oxygenation duration in newborns with congenital diaphragmatic hernia in the United States. *Pediatr Neonatol* 2022;63:139–45.

- 88 Snyder AN, Cheng T, Burjonrappa S. A nationwide database analysis of demographics and outcomes related to extracorporeal membrane oxygenation (ECMO) in congenital diaphragmatic hernia. *Pediatr Surg Int* 2021;37:1505–13.
- 89 Delaplain PT, Zhang L, Chen Y, et al. Cannulating the contraindicated: effect of low birth weight on mortality in neonates with congenital diaphragmatic hernia on extracorporeal membrane oxygenation. J Pediatr Surg 2017;52:2018–25.
- 90 Burgos CM, Frenckner B, Broman LM. Premature and extracorporeal life support: is it time? A systematic review. ASAIO J 2022;68:633–45.
- 91 Guner YS, Harting MT, Jancelewicz T, et al. Variation across centers in standardized mortality ratios for congenital diaphragmatic hernia receiving extracorporeal life support. J Pediatr Surg 2022;57:606–13.
- 92 Mesas Burgos C, Öst E, Frenckner B. Re-ECMO for congenital diaphragmatic hernia: is it worth the effort? J Pediatr Surg 2020;55:2289–92.
- 93 Herco M, Sloan P, Vogel A, et al. Survival and neurodevelopmental outcomes in congenital diaphragmatic hernia patients with single versus repeat extracorporeal membrane oxygenation runs. Am J Perinatol 2022;25:25.
- 94 Cox KJ, Yang NJ, Fenton SJ, et al. Operative repair in congenital diaphragmatic hernia: how long do we really need to wait? J Pediatr Surg 2022;57:17–23.
- 95 Liu Q, Hong C, Li X, et al. Surgical timing in left mild-to-moderate congenital diaphragmatic hernia. Iran J Pediatr 2021;31.
- 96 Harting MT, Hollinger L, Tsao K, et al. Aggressive surgical management of congenital diaphragmatic hernia: worth the effort?: a multicenter, prospective, cohort study. Ann Surg 2018;267:977–82.
- 97 Ruhrnschopf CG, Reusmann A, Boglione M, et al. Biological versus synthetic patch for the repair of congenital diaphragmatic hernia: 8-year experience at a tertiary center. J Pediatr Surg 2021;56:1957–61.
- 98 Suply E, Rees C, Cross K, et al. Patch repair of congenital diaphragmatic hernia is not at risk of poor outcomes. *Journal of Pediatric Surgery* 2020;55:1522–7.
- 99 Heiwegen K, de Blaauw I, Botden SMBI. A systematic review and meta-analysis of surgical morbidity of primary versus patch repaired congenital diaphragmatic hernia patients. *Sci Rep* 2021;11.
- 100 Kamal TR, Tyraskis A, Ghattaura H, et al. Synthetic versus biological patches for CDH: a comparison of recurrence rates and adverse events. Eur J Pediatr Surg 2023;33:198–209.
- 101 Long A-M, Bunch KJ, Knight M, et al. One-year outcomes of infants born with congenital diaphragmatic hernia: a national population cohort study. Arch Dis Child Fetal Neonatal Ed 2019;104:F643–7.
- 102 Dewberry L, Hilton S, Gien J, et al. Flap repair in congenital diaphragmatic hernia leads to lower rates of recurrence. J Pediatr Surg 2019;54:2487–91.
- 103 Aydın E, Nolan H, Peiró JL, et al. When primary repair is not enough: a comparison of synthetic patch and muscle flap closure in congenital diaphragmatic hernia? Pediatr Surg Int 2020;36:485–91.
- 104 Nolan H, Aydin E, Frischer JS, et al. Hemorrhage after on-ECMO repair of CDH is equivalent for muscle flap and prosthetic patch. J Pediatr Surg 2019;54:2044–7.
- 105 Scaife ER, Johnson DG, Meyers RL, et al. The split abdominal wall muscle flap--a simple, mesh-free approach to repair large diaphragmatic hernia. J Pediatr Surg 2003;38:1748–51.
- 106 Barnhart DC, Jacques E, Scaife ER, et al. Split abdominal wall muscle flap repair vs patch repair of large congenital diaphragmatic hernias. J Pediatr Surg 2012;47:81–6.
- 107 Nasr A, Struijs M-C, Ein SH, et al. Outcomes after muscle flap vs prosthetic patch repair for large congenital diaphragmatic hernias. J Pediatr Surg 2010;45:151–4.
- 108 Bawazir OA, Bawazir A. Congenital diaphragmatic hernia in neonates: open versus thoracoscopic repair. Afr J Paediatr Surg 2021;18:18–23.
- 109 Okawada M, Ohfuji S, Yamoto M, *et al*. Thoracoscopic repair of congenital diaphragmatic hernia in neonates: findings of a multicenter study in Japan. *Surg Today* 2021;51:1694–702.
- 110 Elbarbary MM, Fares AE, Marei MM, *et al*. Correction to: thoracoscopic repair of congenital diaphragmatic hernia: a new anatomical reconstructive concept for tension dispersal at primary closure. *Surg Endosc* 2021;35:3285.
- 111 Kotb M, Shehata S, Khairi A, et al. Thoracoscopic repair of neonatal congenital diaphragmatic hernia: minimizing open repair in a low-income country. J Laparoendosc Adv Surg Tech A 2021;31:1341–5.
- 112 Vandewalle RJ, Yalcin S, Clifton MS, et al. Biologic mesh underlay in thoracoscopic primary repair of congenital diaphragmatic hernia confers reduced recurrence in neonates: a preliminary report. J Laparoendosc Adv Surg Tech A 2019;29:1212–5.
- 113 Gomes Ferreira C, Kuhn P, Lacreuse I, *et al.* Congenital diaphragmatic hernia: an evaluation of risk factors for failure of thoracoscopic primary repair in neonates. *J Pediatr Surg* 2013;48:488–95.
- 114 Stewart LA, Klein-Cloud R, Gerall C, et al. Extracorporeal membrane oxygenation (ECMO) and its complications in newborns with congenital diaphragmatic hernia. J Pediatr Surg 2022;57:1642–8.
- 115 Harting MT, Lally KP. The congenital diaphragmatic hernia study group registry update. Semin Fetal Neonatal Med 2014;19:370–5.
- 116 Dao DT, Burgos CM, Harting MT, et al. Surgical repair of congenital diaphragmatic hernia after extracorporeal membrane oxygenation Cannulation: early repair improves survival. Ann Surg 2021;274:186–94.
- 117 Delaplain PT, Harting MT, Jancelewicz T, et al. Potential survival benefit with repair of congenital diaphragmatic hernia (CDH) after extracorporeal membrane oxygenation

(ECMO) in select patients: study by ELSO CDH interest group. *J Pediatr Surg* 2019;54:1132–7.

- 118 Robertson JO, Criss CN, Hsieh LB, *et al*. Comparison of early versus delayed strategies for repair of congenital diaphragmatic hernia on extracorporeal membrane oxygenation. *J Pediatr Surg* 2018;53:629–34.
- 119 Glenn IC, Abdulhai S, Lally PA, et al. Early CDH repair on ECMO: improved survival but no decrease in ECMO duration (A CDH study group investigation). J Pediatr Surg 2019;54:2038–43.
- 120 Steen EH, Lee TC, Vogel AM, *et al.* Congenital diaphragmatic hernia repair in patients on extracorporeal membrane oxygenation: how early can we repair? *J Pediatr Surg* 2019;54:50–4.
- 121 Danzer E, Hoffman C, D'Agostino JA, et al. Short-term neurodevelopmental outcome in congenital diaphragmatic hernia: the impact of extracorporeal membrane oxygenation and timing of repair. *Pediatr Crit Care Med* 2018;19:64–74.
- 122 Zanini A, Macchini F, Farris G, et al. Follow-up of congenital diaphragmatic hernia: need for routinary assessment of acid gastroesophageal reflux with pH-Metry. Eur J Pediatr Surg 2018;28:502–7.
- 123 Montalva L, Carricaburu E, Sfeir R, *et al*. Anti-reflux surgery in children with congenital diaphragmatic hernia: a prospective cohort study on a controversial practice. *J Pediatr Surg* 2022;57:826–33.
- 124 Henzler C, Zöllner FG, Weis M. Cerebral perfusion after repair of congenital diaphragmatic hernia with common carotid artery occlusion after ECMO therapy. *IV* 2017;31:557–64.
- 125 Wong M, Reyes J, Lapidus-Krol E, *et al.* Pulmonary hypertension in congenital diaphragmatic hernia patients: prognostic markers and long-term outcomes. *J Pediatr Surg* 2018;53:918–24.
- 126 Bojanić K, Woodbury JM, Cavalcante AN, et al. Congenital diaphragmatic hernia: outcomes of neonates treated at Mayo clinic with and without extracorporeal membrane oxygenation. Paediatr Anaesth 2017;27:314–21.
- 127 Haliburton B, Mouzaki M, Chiang M, et al. Pulmonary function and nutritional morbidity in children and adolescents with congenital diaphragmatic hernia. J Pediatr Surg 2017;52:252–6.
- 128 Hollinger LE, Harting MT, Lally KP. Long-term follow-up of congenital diaphragmatic hernia. *Semin Pediatr Surg* 2017;26:178–84.
- Koh J-Y, Jung E, Goo HW, *et al.* Functional and structural evaluation in the lungs of children with repaired congenital diaphragmatic hernia. *BMC Pediatr* 2021;21:120.
 Ramarai AB, Foster C, Stark RA, Epidemiology of swallow dysfunction in CDH
- Ramaraj AB, Foster C, Stark RA. Epidemiology of swallow dysfunction in CDH patients. *Am J Surg* 2021;221:1267–70.
 Manuel CA. Appl. Appl. Rep. 127. Appl. Appl. 2021;221:1267–70.
- 131 Moawd SA, Azab AR, Ibrahim ZM, et al. Impacts of respiratory muscle training on respiratory functions, maximal exercise capacity, functional performance, and quality of life in school-aged children with postoperative congenital diaphragmatic hernia. *Dis Markers* 2020;2020:8829373.
- 132 Antiel RM, Lin N, Licht DJ, *et al*. Growth trajectory and neurodevelopmental outcome in infants with congenital diaphragmatic hernia. *J Pediatr Surg* 2017;52:1944–8.
- 133 Wong MKW, Haliburton B, Graham A, et al. Requirement and duration of tube feed supplementation among congenital diaphragmatic hernia patients. J Pediatr Surg 2019;54:895–8.
- 134 Terui K, Tazuke Y, Nagata K, *et al*. Weight gain velocity and adequate amount of nutrition for infants with congenital diaphragmatic hernia. *Pediatr Surg Int* 2021;37:205–12.
- 135 Schwab ME, Burke S, Klarich MK, *et al.* Factors and growth trends associated with the need for gastrostomy tube in neonates with congenital diaphragmatic hernia. *J Pediatr Gastroenterol Nutr* 2021;73:555–9.
- 136 Leeuwen L, Mous DS, van Rosmalen J, *et al.* Congenital diaphragmatic hernia and growth to 12 years. *Pediatrics* 2017;140:e20163659.

- 137 Bevilacqua F, Morini F, Zaccara A, et al. Does ventilatory time retain its validity in predicting neurodevelopmental outcome at two years of age in high-risk congenital diaphragmatic hernia survivors Am J Perinatol 2017;34:248–52.
- 138 Danzer E, Hoffman C, D'Agostino JA, *et al*. Neurodevelopmental outcomes at 5 years of age in congenital diaphragmatic hernia. *J Pediatr Surg* 2017;52:437–43.
- 139 Gunn-Charlton JK, Burnett AC, Malarbi S, et al. Neonatal neuroimaging after repair of congenital diaphragmatic hernia and long-term neurodevelopmental outcome. World Jnl Ped Surgery 2020;2:e000037.
- 140 Van der Veeken L, Vergote S, Kunpalin Y, et al. Neurodevelopmental outcomes in children with isolated congenital diaphragmatic hernia: a systematic review and meta-analysis. Prenat Diagn 2022;42:318–29.
- 141 Aydın E, Özler O, Burns P, *et al*. Left congenital diaphragmatic hernia-associated musculoskeletal deformities. *Pediatr Surg Int* 2019;35:1265–70.
- 142 Burgos CM, Modée A, Öst E, et al. Addressing the causes of late mortality in infants with congenital diaphragmatic hernia. J Pediatr Surg 2017;52:526–9.
- 143 Giordano V, Edobor J, Deindl P, et al. Pain and sedation scales for neonatal and pediatric patients in a preverbal stage of development: a systematic review. JAMA Pediatr 2019;173:1186–97.
- 144 Ancora G, Lago P, Garetti E, *et al.* Evidence-based clinical guidelines on analgesia and sedation in newborn infants undergoing assisted ventilation and endotracheal intubation. *Acta Paediatr* 2019;108:208–17.
- 145 Abiramalatha T, Mathew SK, Mathew BS, *et al*. Continuous infusion versus intermittent bolus doses of fentanyl for analgesia and sedation in neonates: an open-label randomised controlled trial. *Arch Dis Child Fetal Neonatal Ed* 2019;104:F433–9.
- 146 Weems MF, Grover TR, Seabrook R, et al. Analgesia, sedation, and neuromuscular blockade in infants with congenital diaphragmatic hernia. Am J Perinatol 2023;40:415–23.
- 147 Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. *Cochrane Database Syst Rev* 2016;10:CD011219.
- 148 Ceelie I, de Wildt SN, van Dijk M, *et al.* Effect of intravenous paracetamol on postoperative morphine requirements in neonates and infants undergoing major noncardiac surgery: a randomized controlled trial. *JAMA* 2013;309:149–54.
- 149 Baarslag MA, Ista E, de Leeuw T, et al. Clinically effective implementation of intravenous paracetamol as primary analgesia after major surgery in neonates and young infants. Arch Dis Child 2018;103:1168–9.
- 150 Grabski DF, Vavolizza RD, Roecker Z, et al. Reduction of post-operative opioid use in neonates following open congenital diaphragmatic hernia repairs: a quality improvement initiative. J Pediatr Surg 2022;57:45–51.
- 151 Murthy V, D'Costa W, Nicolaides K, et al. Neuromuscular blockade and lung function during resuscitation of infants with congenital diaphragmatic hernia. *Neonatology* 2013;103:112–7.
- 152 Sferra SR, Miller JL, Cortes M S, et al. Postnatal care setting and survival after fetoscopic tracheal occlusion for severe congenital diaphragmatic hernia: a systematic review and meta-analysis. J Pediatr Surg 2022;57:819–25.
- 153 Danzer E, Chock VY, Chung S, *et al*. Image-based Prenatal predictors of postnatal survival, Extracorporeal life support, and defect size in right congenital diaphragmatic hernia. *J Perinatol* 2022;42:1202–9.
- 154 Wang X, Shi Q, Pan W, et al. Mediastinal shift angle in fetal MRI is associated with prognosis, severity, and cardiac underdevelopment in left congenital diaphragmatic hernia. Front Pediatr 2022;10:907724.
- 155 Turbenson MN, Radosevich JJ, Manuel V, *et al*. Transitioning from intravenous to subcutaneous prostacyclin therapy in neonates with severe pulmonary hypertension. *J Pediatr Pharmacol Ther* 2020;25:647–53.

Appendix 1

i) Steering Committee and Panel Composition:

Steering Committee: A three-member Steering Committee (PP, ES, RB) was formed to oversee the CDH Collaborative's guideline development process, to finalize the guideline panel membership and contributors to the literature reviews, to critically appraise all materials generated during the evidence review process, oversee the final guidelines endorsement process and prepare the manuscript, which was reviewed and approved by the Collaborative.

Guideline Panel Composition: Specialists in the fields of pediatric surgery, maternal fetal medicine, pediatric anesthesia, neonatal intensive care, pediatric intensive care, neonatal followup and pediatric cardiology were recruited, including both new and original members from the 2018 CDH Collaborative.

*Pramod S. Puligandla	Pediatric Surgery/PICU	Montreal Children's Hospital
*Erik D. Skarsgard	Pediatric Surgery	British Columbia Children's
Hospital		
*Robert G. Baird	Pediatric Surgery	British Columbia Children's
Hospital		
Elena Guadagno	Research Director	Montreal Children's Hospital
Alexandra Dimmer	Trainee	Montreal Children's Hospital
Olivia Ganescu	Trainee	Montreal Children's Hospital
Nimrah Abbasi	Maternal Fetal Medicine	Mount Sinai Hospital (Toronto)
Gabriel Altit	Neonatology	Montreal Children's Hospital
Mary Brindle	Pediatric Surgery	Alberta Children's Hospital
Sairvan Fernandes	Trainee	British Columbia Children's
Hospital		
Shyamala Dakshinamurthi	Neonatology	Winnipeg Children's Hospital
Helene Flageole	Pediatric Surgery	McMaster Children's Hospital
Audrey Hebert	Neonatology	Centre Hospitalier Université Laval
Richard Keijzer	Pediatric Surgery	Winnipeg Children's Hospital
Martin Offringa	Neonatology	Hospital for Sick Children (Toronto)
Dylan Patel	Trainee	Montreal Children's Hospital
Greg Ryan	Maternal Fetal Medicine	Mount Sinai Hospital (Toronto)
Michael Traynor	Pediatric Anesthesia	British Columbia Children's
Hospital		
Augusto Zani	Pediatric Surgery	Hospital for Sick Children (Toronto)
Priscilla Chiu	Pediatric Surgery	Hospital for Sick Children (Toronto)

*Steering Committee members

All authors listed above made substantial contributions to the conception or design of this work, as well as the acquisition, analysis and interpretation of the data used to create this work. The authors were also involved in drafting the document and revising the final version to be published. All authors are accountable for all aspects of this work in ensuring that any questions

Appendix-1

related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

ii) Literature search

A senior medical librarian conducted an update to the existing CDH guideline published in 2018.[1] The PRISMA guideline[2] for conducting systematic reviews was used. The following databases were searched from January 1, 2017 to August 30, 2022: Medline (Ovid), Embase (Ovid), and Cochrane (Wiley). The search strategy used variations in text words found in the title, abstract or keyword fields, and relevant subject headings to retrieve articles looking very broadly at all congenital diaphragmatic hernia literature. The search excluded editorials, letters to the editor, review articles, case reports involving less than 3 patients, and animal studies, where applicable (See "Supplementary Material" for search strategy). The PRISMA-S[3] extension for searching was used for reporting and is included in the Supplementary material. EndNote X9TM was used for duplicate removal. Initial title and abstract screening was performed by at least two independent reviewers (PP and a combination of OG, EG, DP and/or AD) with a third reviewer resolving the discrepancies using the online platform Rayyan.[4] The primary reason for exclusion was documented in a Google spreadsheet. Selected articles were then segregated according to their potential relevance to each of the 15 CDH care areas.

iii) Evidence appraisal process

The process for updating the existing CDH clinical practice guidelines adhered to GRADE methodology.[5] Work groups were provided the screened articles associated with their area of interest in order to complete their full manuscript critical appraisal for new evidence. Articles could be excluded at this stage if they were deemed irrelevant or if they did not include at least one outcome measure pertinent to the CDH care area under review. The work groups created Population-Intervention-Comparison-Outcome (PICO) tables based on their review of each article (**Appendix 2**). This information was then used to inform changes to existing guidelines or the need to develop new care recommendations.

iv) Recommendation generation and/or modification

Work groups provided evidence summaries supporting the care amendments and then provided the level of evidence for each recommendation using the previously published taxonomy (Figure 2[1]). Recommendations were categorized as "unchanged", "updated" or "new" based on the existence or degree of novelty of evidence emerging since the creation of the 2018 guidelines. Based on the search outcomes, a new set of recommendations were created for analgesia, sedation and neuromuscular blockade, a care area not addressed by the 2018 guidelines.

v) Strength of recommendation

Appendix-1

The strength of recommendation and supporting level of evidence were achieved and displayed according to GRADE recommendations[5] in each section's table of recommendations (see **Tables 1-15**)

vi) Modified Delphi endorsement process

The new and updated CDH care recommendations, including the evidence summaries and PICO tables that supported them, were packaged into a single document that was shared with all Collaborative members and guideline contributors for review. Concomitantly, a survey (Survey MonkeyTM) was delivered to each member explicitly asking if they agreed with each care recommendation as written. Following the consensus framework previously used (**Figure 3**),[1] care recommendations not meeting the predetermined consensus (>80% agreement) thresholds of good or strong were then marked for further discussion. If consensus could not be reached after further discussion, the final level of consensus was noted and this item identified for future discussion by Steering Committee members.

vii) Management of competing interests

Members of the Canadian CDH Collaborative performed their tasks voluntarily. All members reported conflict of interest/commitment declarations, and no conflicts were encountered.

viii) Funding

This project received no external or internal funding.

References:

- Puligandla PS, Skarsgard ED, Offringa M, et al. Diagnosis and management of congenital diaphragmatic hernia: a clinical practice guideline. *Canadian Medical Association Journal* 2018;190(4):E103-E12. doi: 10.1503/cmaj.170206
- 2. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71. doi: 10.1136/bmj.n71
- Rethlefsen ML, Kirtley S, Waffenschmidt S, et al. PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. *Systematic Reviews* 2021;10(1):39. doi: 10.1186/s13643-020-01542-z
- 4. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan—a web and mobile app for systematic reviews. *Systematic Reviews* 2016;5(1):210. doi: 10.1186/s13643-016-0384-4
- Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008;336(7650):924-26. doi: 10.1136/bmj.39489.470347.AD

Appendix-1

Appendix 1: PICO Tables Informing New CDH Care Recommendations

Table 1: Summary table for evidence supporting revisions in CDH prenatal diagnosis and management

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Kammoun (2018)[1]	Cohort of 120 fetuses with isolated CDH (L, R, B/L)	Targeted massively parallel sequencing of 143 human and mouse CDH causative and candidate genes	NA	10% pathogenic or likely pathogenic CNVs	B-NR
Zhu (2018)[2]	196 CDH (96 isolated, 80 non-isolated, remaining insuff. data) Vs. 987 healthy, unaffected controls	CMA (customized aCGH platform designed covering 140 known and candidate CDH regions)	NA	Up to 13% pathogenic variants (9.7% if large CNVs excluded) *Comparison to controls *no prenatal data	B-NR
Schwab (2022)[3]	22 parent- offspring trios	none	CDH fetus and parents	Exome sequencing increases the diagnostic yield in CDH	C-LD
Sferra (2022)[4]	SR/MA of 5 studies (150 eligible patients)	Integrated postnatal care (ECLS) after FETO	Non- integrated postnatal CDH care (no ECLS) after FETO	Survival increased OR 2.97 (1.69-4.26) with integrated care and ECLS access	B-NR
Wild (2022)[5]	411 patients	none	none	43% of syndromic and 98% of non- syndromic/isolated CDH did not have genetic abnormality identified; need expanded genomic	C-LD

Γ

				analysis	
Danzer	CDHSG	none	none	Cannot use LCDH	C-LD
(2022)[6]	156 (of			prenatal imaging	
	2510) RCDH			criteria to predict	
				outcome for RCDH	
Abbasi	Determine	48 imaging	NA	Trace highest inter-	B-NR
(2019)[7]	antenatal	specialists		rater agreement and	
	lung area	13 CDH		lowest bias among	
	measurement	fetal US		experienced and	
	method with	studies		inexperienced	
	highest inter-			NAFTNet centres	
	rater				
	NAFTNet				
Russo	RCDH		Survival	Neonatal survival/	B-NR
(2021)[8]	214 isolated		comparison	LOS in NICU	
	RCDH		between	predicted by o/e	
	86 Expect		expectant and	LHR US and o/e	
	mgmt.		fetal therapy.	TFLV MRI	
	128 FETO			In fetuses with o/e-	
				LHR ≤45% treated	
	Retrospectiv			with FETO, survival	
	e multicentre			rate was higher than	
	review			in those with similar	
				lung size managed	
				expectantly (49/120	
				(41%) vs 4/27	
				(15%); P = 0.014),	
				despite higher PTB	
				(GA at birth: $34.4 \pm$	
				2.7 weeks vs 36.8 ±	
				3.0 weeks; P <	
				0.0001).	
				With FETO, GA at	
				birth = only	
				predictor of survival	
				Best o/e LHR for	
				prediction of	
				survival = 50%	
Bouchghoul	Optimal	Kaplan–	NA	213 L CDH	B-NR
(2021)[9]	timing of	Meier		Median GA 38 +2	
	delivery	method \		(3/-39+1)	
	Isolated L	used to		Delivery <37 wks.,	
		calculate		significant lower	
	NO FEIO	cumulative		survival rate	
	Ketrospectiv	survival at	1	⊾apian–ivieier	

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s) Arch Dis Child Fetal Neonatal Ed

	e study	28 days after		analysis higher	
		birth		survival at 28 days	
		according to		when delivery	
		GA at		between $37 + 0$ and	
		delivery.		38 + 6 wks. vs.	
		Adjustment		delivery at or after	
		for liver		39 + 0 wks.	
		position, o/e		(p<0.001)	
		LHR,		For mod CDH, the	
		management		28-d & 6 mo.	
		center and		survival	
		mode of		significantly higher	
		delivery.		with delivery	
		Association		between $37 + 0$ -	
		also		38 + 6 wks. vs.	
		evaluated		delivery at/ after	
		according to		39 wks. (not	
		severity of		(81.5% vs 61.5%; P	
		CDH/ o/e		= 0.03 for 28 d	
		LHR (mild/		survival). ?	
		mod/ sev)		Worsening PHTN.	
				Not seen with mild/	
				sev. CDH? power	
				Survival rate did not	
				differ according to	
				mode of delivery at	
				28 d, trend towards	
				lower survival with	
				CS (survival lower	
				with emergency	
				CS).	
				Isolated mod	
				CDH-delivery	
				should be	
				considered between	
				38-9 wks.	
				Mode of delivery	
				standard Ob	
				indications	
Wang	94 CDH	none	none	Mediastinal shift	C-LD
(2022)[10]				angle predicts	
				outcomes and LV	
				hypoplasia	
Weller	101 CDH	none	none	Stomach position	C-LD
(2022)[11]				predicts need for	
				increased PH	

				management (and	
				increased defect	
				size)	
Oleversi Ohi	Dueu et eller	Dueu staller	Dueu et elles	size)	D ND
(2017)[12]	Prenatally	Prenatally	Prenatally	O/e LHK and O/e	B- NK
(2017)[12]	control (L · D)	cDU	CDU	IFLV performed	
	CDH(L+K)	CDH ·	CDH non-	best in prediction of	
	22 studies	survivors	survivors	survival (o/e IFLV	
	(prospective			AUC 0.8 and o/e	
	æ			LHR 0.78 with	
	retrospective			longest diameter	
) included in			and slightly higher	
	metanalysis			with trace method	
	evaluating			AUC	
	prenatal US			0.85). Thresholds of	
	and MRI			<25% for o/e LHR	
	parameters &			and o/e TFLV more	
	prediction of			specific for neonatal	
	survival (1ry			mortality. Liver	
	outcome),			herniation by US	
	and use of			and MRI also	
	ECLS (2ry)			significant	
				predictors of	
				mortality (present/	
				absent by US and	
				quantitatively by	
				MRI). Odds of	
				survival 0.21 with	
				liver herniation by	
				US. LiTHR AUC	
				0.72 %HL AUC	
				0.75 for prediction	
				of mortality.	
				LHR<1 predictive	
				of need for ECLS	
Senat	305 LCDH	Predictive	Low volume	Survival at 28 days,	B-NR
(2018)[13]		value of o/e	centres (<14	for specificity of 0.3	
		LHR for	CDH cases;	Sensitivity 0.71 in	
		survival at	223 cases in	larger centres and	
		28d and 6	29 centres)	0.55 in smaller	
		months in		centres.	
		high volume			
		centres			
		(>/=14 CDH			
		cases, 82			
		CDH cases			

in 2 centres)

Class of

Author

Population

					Evidence
Belfort (2017)[14]	Isolated	FETO	9 expect.	1/11 FETO not	C-NR
	severe LCDH	LHR <1 &	mgmt.	technically	
		liver	"Historical	feasible	
		herniation	controls"	Improved survival	
		(n=11)		in FETO vs.	
				expect mgmt.:	
				6 mo. (80% vs.	
				11%), 1 yr. (70%	
				vs. 11%) and 2yr	
				(67% vs. 11%)	
				survival	
				Reduced ECMO	
				(30 vs. 70%)	
Baschat (2020)	CDH	FETO	Feasibility	Neonatal survival	C-NR
[15]	Mod-sev	o/e LHR	study, no	93%	
	CDH	<30%	control group	Survival to	
	Non-isolated	n=14		discharge 86%	
		Associated		PPROM 30%	
		anomalies		Median gestational	
		CCAM (n=2)		age at birth was 39	
		TOF $(n=1)$		2/7 wks. (range 33	
		Normal		6/7-39 4/7)	
		genetic		(*PRG, Tocolysis,	
		testing		pessary,	
				amnioreduction,	
				needle puncture	
D	T 1. 4 . 1	M. L.	10	balloon?)	A D
Deprest(2021)[16]	Isolated	Moderate	40 expect.	FEIO at 30-32	A-K
	CDU		mgmt.	wks. and not result	
	CDH	LCDH (0/e		in a significant	
		LHK 23-33%,		(62 us - 50%)	
		33-4370 IIVel		(05 VS. 50%) EETO increased	
		up)		PPROM (AA ve	
		RCT 1.1		12%) and PTR	
		Primary		<37 wk (64% vs	
		outcome.		22%)	
		Infant			
		survival to			
		discharge			
		from a NICU			
		and survival			
		from a NICU and survival			

Table 2: Evidence summary for updated recommendations regarding fetal therapy in CDH

Intervention Comparison Outcome

		without 02 at			
Deprest (2021)[17]	Isolated severe CDH	Severe isolated LCDH (o/e LHR <25%) RCT 1:1 primary outcome: Infant survival to discharge from NICU	98 expect. mgmt.	FETO at 27 to 29 wks. resulted in a significant benefit over expectant care with survival to discharge (40% vs. 15%) and survival at 6 months. FETO increased PPROM (47 vs. 11%) and PTB <37 wks. (75% vs. 20%)	A-R
Van Calster (2021)[18]	Isolated LCDH mod + sev (pooled data NEJM)	Data from 2 NEJM trials pooled to study the heterogeneity of the treatment effect by o/e LHR and explore the effect of GA at balloon insertion		aOR of FETO with early balloon insertion was 2.73 (95% CI, 1.15- 6.49). Results for survival to 6 months and survival to 6 months without 02 were comparable. FETO increases survival for both moderate and severe lung hypoplasia. Difference between the results for the TOTAL trials, when considered apart, may be because of the difference in the time point of balloon insertion. The effect of the time point of balloon insertion could not be robustly assessed	A-R

7

				1 0 11	1
				because of a small	
				sample size and	
				the confounding	
				effect of disease	
				severity.	
Russo(2016)[19]	Transplacental	DH fetuses	DH fetuses	Sildenafil-exposed	B-NR
	sildenafil in	were	without	DH fetuses, had a	
	rabbit model	randomly	transplacental	medial and	
	DH	exposed to	sildenafil	adventitial	
		transplacental		thickness in	
	Determine	placebo or		peripheral	
	therapeutic	sildenafil 10		pulmonary vessels	
	dosing	mg/kg/ day		in the normal	
	without	from		range and normal	
	toxicity and	gestational		vascular	
	assess	day 24 until		branching. Fetal	
	pulmonary	examination		pulmonary artery	
	effects of	at term (day		Doppler showed a	
	sildenafil	30).		reduction of	
		,		pulmonary	
		Efficacy		vascular	
		measures		resistances	
		were		Sildenafil also	
		ipsilateral		reversed the mean	
		pulmonary		terminal	
		vascular and		bronchiolar	
		airway		density to normal	
		morphometry.		and improved lung	
		micro-CT-		mechanics vet	
		based		without	
		branching		measurable impact	
		analysis		on lung-to-	
		Doppler flow		bodyweight ratio	
		in the main		In the rabbit	
		nulmonary		model for	
		artery and		dianhragmatic	
		nostnatal lung		hornio	
		mechanics		matarnally	
		meenames.		administered	
				sildonofil rovorcoc	
				sincenant reverses	
				an the	
				pathological	
				changes in lung	
				peripheral vessels	
				and also results in	
				a morphological	

8

		and functional improvement in lung parenchyma without obvious fetal and maternal toxicity, except for fetuses with normally developed lungs in whom it seems to decrease vascular branching.	
Russo (2018)[20] Sildenafil	Randomized,		A-R
SToP-PH	investigator-		(ongoing)
Trial	blinded,		
(ongoing)	double-		
	narallel-		
	group phase		
	I/IIb study		
	with as a		
	primary		
	objective to		
	measure the		
	in-vivo		
	transplacental		
	transfer of		
	sildenafil in		
	women in 12		
	Participants		
	undergoing		
	termination of		
	pregnancy		
	will be		
	randomized		
	to two		
	different		
	sildenatil		
	uoses: 25 or 75 mg (single		
	dose or 3		
	doses prior to		
	delivery).		
	Maternal and		

		fetal blood samples will be collected. Markers of fetal pulmonary vasodilation will also be measured.			
Russo (2021)[8]	RCDH 214 isolated RCDH 86 Expect mgmt. 128 FETO Retrospective multicentre review		Survival comparison between expectant and fetal therapy.	Neonatal survival/ LOS in NICU predicted by o/e LHR US and o/e TFLV MRI In fetuses with o/e-LHR \leq 45% treated with FETO, survival rate was higher than in those with similar lung size managed expectantly (49/120 (41%) vs 4/27 (15%); P = 0.014), despite higher PTB (GA at birth: 34.4 ± 2.7 weeks vs 36.8 ± 3.0 weeks; P < 0.0001). With FETO, GA at birth = only predictor of survival Best o/e LHR for prediction of survival = 50%	B-NR

*One article (Russo et al) was excluded as it was a review article ineligible for data abstraction.

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Gerall (2021)[21]	77 CDH (2005-2019)	CMV to HFPPV to HFOV	CMV to HFOV	HFPPV to HFOV group experienced higher survival, earlier surgical repair, less ECLS/iNO, less need for oxygen and decreased need for PHTN medications	Retrospective C-LD
Cochius-den Otter (2020)[22]	Retrospective review of 71 CDH infants with 18 classified as mild severity and underwent spontaneous breathing approach (SBA)	Spontaneous breathing	Received respiratory support	6/15 were successful with SBA; 3 were excluded due to no plan for SBA	C-LD
Derraugh (2020)[23]	Propensity analysis of 80 CDH infants (1991-2015) receiving HFV or CMV at time of surgery	HFV (39 patients)	CMV (41 patients)	Raw analysis suggested increased oxygen dependence and death with HFV but propensity analysis demonstrated no difference	C-LD
Fuyuki (2021)[24]	327 patients stratified based on initial mode of ventilation (250 HFV, 77 CMV) using Japanese CDH Study Group	HFV	CMV	Adjusted odds of death (0.98,CI 0.57- 1.67) or BPD (1.66, CI 5.49) were no different between groups	C-LD
Kurland (2021)[25]	18 of 130 CDH (2011- 2019) selected	NAVA while intubated	Standard IMV while intubated	NAVA tolerated in 16, not tolerated in 2. Lower PIP, lower	C-LD Retrospective single-centre

Table 3	- Evidence sumr	nary informing	changes to vent	ilation strategies in CDH

	by clinician.			MAP and decreased	
	32 matched			sedative/analgesia	
	controls			use on NAVA	
Meinen	10 CDH	NAVA for	Standard	Successful wean to	C-LD
(2021)[26]	patients	wean from	wean from	NIV in 6,	Retrospective
	(2015-2018)	IMV	IMV	unsuccessful in 4.	single-centre
	selected by			Lower PIP, lower	
	clinician.			MAP and decreased	
				use for supplemental	
				O2 on NAVA.	
Wise	45 CDH	Heliox as	Standard	Significant,	C-LD
(2018)[27]	(2011-2015).	rescue for	ventilation	sustained decrease in	Retrospective
	28 instances	hypercapnia	strategy using	FiO ₂ , PIP, and	single-centre
	of heliox use		air/O2	PaCO ₂ after switch	
	for			to heliox	
	hypercapnia				
	(clinician				
	discretion).				

Table 4: Evidence summary informing changes to fundamentals of hemodynamic support

Author	Population	Intervention	Comparison	Outcome	Class of
					Evidence
Acker et al (2014)	13 CDH infants	vasopressin		Vasopressin was effective in 6/13 patients (improved BP, reduced pulmonary/systemic pressure ratio	C-NR
Ryan (2020)	54 CDH neonates (CDH registry from 2011- 2017)			Development of AKI – 37% - risk factors include patch repair, vancomycin, diuretics, corticosteroids	C-NR

Liberio (2021)[28]	CDH neo (single center)	Infants developing AKI n=34 vs those with no AKI n=34.	The overall survival rate of infants with CDH in this cohort was 79%. Survival was 47% for those with AKI, while no AKI experienced a 98% survival	C-LD
Thodika (2022)[29]	admitted to tertiary care center from 2011 – 2021,	developing AKI (n=59) vs. no AKI (n =35)	FETO had increased incidence of AKI (49.1% vs. 18.8%, p=0.005)	C-LD
	Infants with renal anomalies excluded		AKI not an independent predictor of survival, hospital duration, or length of ventilation or ICU stay	

Table 5: Evidence summary informing changes to the role of echocardiography in CDH

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Ferguson (2021)[30]	CDH neo	Echocardiogr aphy – PH severity	PH severity categorized using echocardiogra phic findings: none, mild (RVSP detectable but <2/3 systemic), moderate (RVSP $\ge 2/3$ systemic and \le systemic), or severe (supra- systemic RVSP).	Increased PH severity over time correlated with worse late outcomes, including overall in hospital mortality and a composite outcome of mortality or oxygen support at discharge/transfer	C-LD

Gupta (2021)[31]	CDH neo	Pro-BNP values	Association between pro- BNP values and ventricular dysfunction	Patients with any ventricular dysfunction on their initial echo had higher proBNP values than patients with normal ventricular function. For all patients whose proBNP value improved over time, their echo either showed normal ventricular function or improvement in cardiac function at discharge	C-LD
Yang (2020)[32]	CDH neo	CDH Protocol adoption Delaying echo at 24 hours of life	Pre and post epochs of guidelines adoption	Decrease in ECMO and increase in survival without ECMO	C-LD
Altit (2017)[33]	CDH neo	Echocardiogr aphy	ECMO vs Non-ECMO	Decreased left and right ventricular performance were significantly associated with need for ECMO	C-LD
Guslits (2021)[34]	CDH	Pro-BNP values	Respiratory status at 56 days	BNP cutoffs that maximized correct outcome classification decreased over time from 285 pg/mL at 3 weeks to 100 pg/mL at 4 weeks and 48 pg/mL at 5 weeks.	C-LD
Avitabile (2020)[35]	CDH neo	Pro-BNP and echocardiogr	BNP-echo pairing preop	BNP and strain abnormalities	C-LD

and post-op

Appendix-2 PICO Tables 14

aphy

were associated with an ECMO

requirement. Higher BNP level

				in recovery was associated with greater mortality. Abnormal strain in recovery had high sensitivity for detection of mortality	
Aggarwal (2022)[36]	CDH neonates	Echocardiogr aphy measures of the relationship between right ventricular contractility and pulmonary hypertension	Echo parameters combining RV function and PH severity were compared among survivors and those who died or required ECMO	Non-survivors and those requiring ECMO had lower PAAT/PET, TASPE/PAAT and TAPSE/RSVP compared to survivors without ECMO	C-LD
Kipfmueller (2022)[37]	CDH neonates	Echocardiogr aphy measures calculating the pulmonary artery acceleration time to the right ventricular ejection time (PAAT/ET)	PAAT/ET were compared between non- ECMO survivors, ECMO- surviovors and non-survivors	Baseline PAAT/ET values were significantly lower in ECMO patients ECMO survivors had similar PAAT/ET values to non-survivors at baseline and DOL2, but non- survivors had significantly lower values at DOL 5-7	C-LD
Guner (2021)[38]	CDH neonates ELSO practice guidelines	N/A	N/A	Recommend early echo (4-12 hours of life) to assess cardiac anatomy & function	B-NR
Patel (2019)[39]	CDH neonates Multicenter prospective	Assessment of cardiac function from	Survival compared amongst	Survival varied by category: normal function 80%	C-LD

study (CDHS	G early echo	infants with	RV _{dys} , 74%;	
registry)	(first 48	normal	LV_{dys} , 57%; and	
	hours of life)	function, RV	RV&LV _{dys} , 51%	
		dysfunction	(P < 0.001).	
		only, LV		
		dysfunction		
		only or		
		combined RV		
		& LV		
		dysfunction		

One study (Prasad et. al) excluded. This was a systematic review and attempted meta-analysis. 11 studies were included, without consistent data reporting among the 11 studies, with different outcomes examined. No definitive conclusions were drawn in this article.

6 studies were reviewed for full text and excluded, due to relevancy.

Table 6: Evidence summary supporting existing care recommendations for the role of prostaglandins in the management of CDH-associated pulmonary hypertension

Author	Population	Intervention	Comparison	Outcome	Class of
					Evidence
Le Duc	18	PGE in CDH	Pre-Post study	FiO2, pre-post	C-LD
(2022)[40]				ductal SpO2,	
				blood flow via	
				ductus.	
Lawrence	57	PGE	Pre-post study	BNP levels,	C-LD
(2019)[41]				echocardiographi	
				c estimates of	
				severe PH	
				improved.	

Table 7: Evidence summary supporting care recommendations regarding targeted pulmonary vasodilation in the management of CDH-associated pulmonary hypertension.

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Joshi et al (2022)	10	vasopressin		Reduction in oxygenation index, improvement in BP, averted ECLS in 50%	C-NR
Jozefkowicz (2020)[42]	18	Treprostinil	Clinical data were compared before and after treprostinil treatment.	Before treatment, median OI 20 (IQR: 12–27). Suprasystemic PH in 8/17 patients; the rest were systemic. After 1 week of treatment, 15/17 patients were alive and median OI was 8 (IQR: 5–12, p 0.0089). Echocardiogram still showed suprasystemic PHT in 20% of patients	C-LD
Turbenson (2020)[43]	3 with CDH out of 5	Transitioning From	Description of transition from	Rapid high-dose transition from IV	C-LD

		Intravenous to	IV	epoprostenol to	
		Subcutaneous	epoprostenol to	IV treprostinil	
		Prostacyclin	subO	and then to SO	
		Therapy	Treprostinil	treprostinil is well	
		пстару	riepiostiini	tolorotad in	
				neonates, with	
				minimal adverse	
				effects.	
Carpentier	14 CDH	Treprostinil	Oxygenation	Post-ductal SpO2	C-LD
(2017)[44]			parameters and	increased and the	
			ECHO pre and	difference	
			post	between the pre-	
			introduction.	and post-ductal	
				SpO2 decreased	
				after starting	
				Treprostinil.	
				Mean blood flow	
				velocities in the	
				LPA and RPA	
				increased after	
				beginning	
				treprostinil	
				(n < 0.05) The	
				$(p \times 0.05)$. The	
				score for the	
				Curvature of the	
				IVS decreased	
				after starting	
-	144 0011 15	D		Treprostinil.	<u>a i b</u>
Lawrence	164 CDH – 17	Retrospective	Pre-Post	Infants treated	C-LD
(2018)[45]	with	cohort -	treprostinil	with treprostinil	
	treprostinil	treprostinil for		were more likely	
		severe		to be treated with	
		pulmonary		additional	
		hypertension.		pulmonary	
				hypertension	
				therapies and	
				ECMO. They	
				were also more	
				likely to have a	
				longer length of	
				hospital stay and	
				longer duration of	
				mechanical	
				ventilation Over	
				the same period	
				of time that BNP	

				decreased, there was also an improvement in pulmonary hypertension as assessed by echocardiogram.	
Guslits (2021)[34]	CDH	Pro-BNP values	Respiratory status at 56 days	BNP cutoffs that maximized correct outcome classification decreased over time from 285 pg/mL at 3 weeks to 100 pg/mL at 4 weeks and 48 pg/mL at 5 weeks.	C-LD

5 full-text articles were reviewed and excluded due to relevancy.

Table 8: Evidence summary supporting revised recommendations regarding the use of ECLS in the management of CDH

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Jancelewicz (2022)[46]	CDH neo	ECLS		Overall mortality higher with ECLS (47.8% vs 21.8% OR 3.3) Survival advantage in subgroup of high-risk patients (64.2% vs 84.4% OR 0.33), this was only observed in high CDH volume centres	C-LD
Delaplain (2017)[47]	CDH neo	ECLS	<34 weeks gestation <2 kg	No mortality difference <34 weeks gestation OR 2.11 for mortality in <2 kg	C-LD
Guner (2021)[38]	CDH and ECLS guideline	Interim consensus guideline		No change in timing If possible delay repair till after ECLS High risk might benefit from early repair while on ECLS	B-NR
Mesas Burgos (2020)[48]	CDH neo	Re-ECLS	Primary vs re- ECLS	Same indications and similar long term outcomes	C-LD
Gien (2022)[49]	CDH neo (n=13)	ECLS	N/A – observational study of severe CDH managed with ECLS and early repair	77% survived ECMO and 69% survived to discharge. 22% underwent tracheostomy.	C-LD
Zheng (2022)[50]	CDH neo	Cost- effectiveness of ECLS >2 weeks	ECLS < 2 weeks	ECLS duration of 2-3 weeks is more cost effective than > 3 weeks in 68.6% of simulations	C-LD
Snyder (2021)[51]	CDH neo	ECLS	CDH without ECLS	11.2% of infants received ECLS. Newborns with CDH on ECMO had a survival of 46%	C-LD

				(61/133) compared to 85.5% without ECMO (903/1056)	
Burgos (2022)[52]	Systematic Review of CDH neo	ECLS in early (<34 weeks) prematurity	ECLS in late (37 weeks) prematurity	Risk of ICH and death has declined in ECLS group <34 weeks and is comparable to premature infants without ECLS. GA < 34 weeks may no longer be considered a contraindication to ECLS	C-LD
Guner (2022)[53]	CDH and ECLS guideline	Interim consensus guideline		$GA \le 32$ weeks and weight $\le 1.7-2$ kg should be considered relative contraindications Concomitant severe congenital heart disease and CDH may be considered a contraindication for ECLS based on severity of the cardiac defect; multidisciplinary communication is	B-NR

				communication is mandatory in such patients Major genetic abnormalities or syndromes are commonly considered relative contraindications for	
Herco (2022)[54]	CDH neo	ECLS (1 vs. 2 runs)	Comparison of Neurodevelop mental outcomes in CDH without ECLS, 1 run of ECLS, and 2 runs of	Survival of ECMO patients was 50%, with 48% of single run and 57% of repeat run patients surviving to discharge. CDH neonates who	C-LD

	ECLS	underwent ECMO	
		(single or repeat runs)	
		were more likely to	
		have lower cognitive,	
		language, and motor	
		composite scores as	
		compared	
		with CDH neonates	
		who had not required	
		ECMO. Motor	
		composite scores were	
		significantly	
		lower in repeat ECMO	
		run neonates as	
		compared with single	
		ECMO run but there	
		were no further deficits	
		noted in language or	
		cognitive domains.	

*One article (Abdulhai et al) was excluded due to outcome measurement as this was a survey of pediatric surgeons.

Outcome

Class of

Author

					Evidence
Harting (2018)[55]	CDH neo (CDHSG database)	Repair at high volume sites with low or high rates of repair	Patients treated at high volume centers with low rates of non-repair (n=1105) Patients treated at high volume centers with high rates of non-repair	For every 100 CDH patients, high volume centers with a low rate of non- repair have at least 2.7 additional survivors beyond high volume centers with a high rate of non-repair	C-LD
Liu (2021)[56]	CDH neo (single center)	Thoracoscopic repair of mild to moderate left-sided CDH (early vs. delayed)	(n=1125) Patients repaired early (within 48 hours) n =15 Patients repaired later n=15	Delaying thoracoscopic repair was of no benefit for mild- moderate CDH (LHR > 1)	B-R
Cox (2022)[57]	CDH neo (retrospective single center)	Analysis of repeated measures of oxygenation index (OI)	Delay in surgical repair beyond initial stability (OI < 9.4)	A pre-operative OI of ≤ 9.4 (AUC 0.95) was predictive of survival. Surgical delay after an OI ≤ 9.4 resulted in increased ventilator days (1.4, 95% CI 1.1–1.9) and discharge age (1.5, 95% CI 1.2–2.0).	C-LD

Table 9: Evidence summary supporting revised recommendations surgical readiness criteria

Comparison

Intervention

Population

One paper (Kotb et al) was excluded due to relevance. One paper (Abdulhai et al) was excluded due to outcome measurement as this was a survey of pediatric surgeons.

Author

Population

Outcome

Class of

Comparison

					Evidence
Ruhrnschopf (2021)[58]	CDH neo	Patch repair (synthetic)	SIS-18 PTFE-25	CDH recurrence: SIS-50% PTFE-4%	C-LD
Suply (2020)[59]	CDH neo	Patch repair (synthetic)	Patch-107 NP-96	Recurrence: Patch-9.3% NP-4.2% (p=NS)	C-LD
Long (2019)[60]	CDH neo	Patch repair (synthetic, biologic)	Synthetic (Goretex, PP, Polyester) n=34 Biologic (bovine or porcine collagen) n=19	Recurrence: Synthetic-12% Biologic-11% (p=NS)	C-LD
Heiwegen (2021)[61]	CDH neo (meta, SR of 25 studies)	Patch repair (1254)	No outcomes comparison by type of patch	Recurrence, SBO, chylothorax higher in patch repair	B-NR
*Aydin (2020)[62]	CDH neo	Non-primary repair (patch or muscle flap)	Synthetic P- n=34 Muscle flap- n=57	Recurrence: Synthetic-9% Muscle flap- 3.5% (p=NS)	C-LD
*Dewberry (2019)[63]	CDH neo	Non-primary repair (patch or muscle flap)	Synthetic P- n=30 Muscle flap- n=40	Recurrence: Synthetic-10% Muscle flap-3% (p=NS)	C-LD
Kamal (2022)[64]	CDH (<16 y) Meta, SR of 47 studies	Patch repair	Synthetic (760) Biologic (226)	Recurrence rates: 16.7% synthetic vs. 30.3% biologic	B-NR
Nolan (2019)[65]	CDH neo, on- ECLS repairs	Patch repair (n=13)	Muscle-flap repair (n=16)	Seven patch (53.8%) and 9 flap (56.2%) patients survived to	C-LD

Table 10: Evidence summary supporting care recommendations regarding options for nonprimary repair

Intervention

		discharge (p =	
		0.596). On-	
		ECLS bleeding	
		complications	
		are the same for	
		both flap and	
		patch repair.	

Table 11 - Evidence summary informing care recommendations regarding open vs. min	imally-
invasive repair	

Author	Population	Intervention	Comparison	Outcome	Class of
					Evidence
Bawazir (2021)[66]	CDH neo (single center)	Repair	Thoracoscopic- n=11 Open-n=30	Recurrence: Thoracoscopic- 9.1% Open-0% F/U period-not provided	C-LD
Vandewalle (2019)[67]	CDH neo (single center)	MIS (thoracoscopic) repair	Thoracoscopic 1° repair-n=28 Thoracoscopic repair w biologic mesh underlay-n=15	Recurrence: 1° repair-21.4% Repair with biologic mesh underlay-6.6% F/U ≥5y	C-LD
Okawada (2021)[68]	CDH neo (multicenter)	Repair	Open repair- n=467 Thoracoscopic repair-n=47	Recurrence: Open repair-3% Thoracoscopic repair-7% F/U period-not provided	B-NR
Elbarbary (2021)[69]	CDH neo and late presenters (single center)	MIS (thoracoscopic) case series modified closure technique	N=36 (No comparison group)	Recurrences 5 (16%) F/U mean 29m	C-LD
Kotb (2021)[70]	CDH neo (single center)	Thoracoscopic 1° repair in selected patients (n=39)	No comparison group	5 conversions 2 recurrences (median F/U 12 months)	C-LD

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Stewart (2022)[71]	CDH Newborns who require ECMO (Columbia)	CDH repair on ECMO (n=54)	none	61% survival 70% complication rate (metabolic, mechanical, hemorrhage (22%)	C-LD
Gien (2022)[49]	Newborns (n=19) with severe CDH: O/E LHR<25%) (Denver)	CDH repair on ECMO (11/12 within 72h of cannulation	none	Survival 10/12 Bleeding complication 2/13 11/13 rectus abdominus flap	C-LD
Dao (2021)[72]	CDH NB who require ECMO (CDHSG registry (PS matched)	Repair on (early or late) or after ECMO	 On vs After Early vs late (on ECMO repair predominates in high volume centres 	 With non- repairs excluded, on ECMO repair assoc with lowest mortality. Early and Mixed on ECMO repair survival superior late on ECMO repair. No difference if non-repairs excluded 	B-NR
Glenn (2019)[73]	CDH NB who require ECMO (CDHSG)	Repair on ECMO within 72h (n-248)	Unrepaired at 72h (n=922)	Improved survival in early repair (87.1 vs 78.4%), but longer ECMO duration	B-NR
Steen (2019)[74]	CDH NB who require ECMO and undergo repair within 72h (Baylor)	Repair on ECMO within 24h (n=14) "super-early"	Repair on ECMO between 24- 72h (n=19)	Improved survival (71.4 vs 59.7%) in super early group	B-NR

Table 12: Evidence summary for updated recommendations regarding surgical repair on ECLS

Delaplain (2019)[75]	CDH NB who require ECMO (ELSO). PS matched	Repair on ECMO	Repair off ECMO	3-fold increase in mortality; 1.5 fold increase in severe neurologic injury in on ECMO repair	B-NR
Robertson (2018)[76]	CDH NB who require ECMO (Ann Arbor)	"Early" (<u>≤</u> 5d) Repair on ECMO	"Late" (>5d) repair on ECMO	Early repair independent predictor of mortality and days on ECMO.	B-NR
Danzer (2018)[77]	CDH NB who require ECMO (CHOP)	Repaired on ECMO	No ECMO, repaired pre- ECMO, repaired post- ECMO	Repaired on ECMO group had poorer cognitive, motor (fine and gross) scores by Bayley Scales testing (22m)	B-NR

3 full-text articles were reviewed and excluded from analysis due to relevance.

Table 13: Evidence summary for the management of gastroesophageal reflux in CDH

Author	Population	Intervention	Comparison	Outcome	Class of
					Evidence
Montalva	CDH neo	Preventive	No	Preventive	B-NR
(2022)[78]		Fundoplication	fundoplication	fundoplication not	
			during CDH	recommended	
			repair		
Zanini	All CDH	pH-metry	pH-metry	Routine	B-NR
(2018)[79]		study at age 1	study at age 1	assessment for	
		in CDH	in EA patients	GERD should be	
		patients	and children	performed	
			without	regardless of sx	
			congenital		
			anomalies but		
			GERD sx		

6 full-text articles were reviewed and excluded as they did not contain the primary outcome measure of interest.

Table 14: Evidence summary for long-term follow-up in CDH

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Henzler (2017)[80]	Prospective CDH 2-year olds (n=29)	Assessment of cerebral blood flow by pulsed arterial spin labeling (pASL) MRI and angiography following ECMO with RCCA cannulation	non-ECMO CDH patients	14 patients had RCCA occlusion 4/14 had >20% reduction in right hemisphere perfusion Collateral circulation restored perfusion to the right hemisphere in RCCA occluded circulation. No focal lesions	B-NR
Wong (2018)[81]	Retrospective study of CDH patients (n=160)	Assessing the use of tube feed supplementation in CDH patients		20% of patients required tube feeds at discharge 5 patients (4%) started TF after discharge due to FTT Need for TF correlated with patch repair, ECMO, prolonged ICU stay, initial arterial pH < 7.25, ventilator days and days to first feed In LTFU, 50% discontinued TF by 3 years	C-LD
Bojanic (2017)[82]	CDH neo (n=38)	Retrospective study of CDH infants treated with ECMO	CDH infants treated without ECMO	8/38 infants required ECMO30/38 patients survived including6/8 ECMO patients	B-NR

			who had more	
			chronic lung,	
			GI/nutrition and	
			neurodevelopmental	
			problems at follow-	
			up	
Haliburton	CDH neo	Retrospective	Sampled patients	C-LD
(2017)[83]	(n=33)	single-center review	had elevated pREE	
		of CDH infants who	and negative FEV1,	
		underwent indirect	FVC z-scores; they	
		calorimetry and	also had lower BMI	
		PFTs	z-scores that	
			correlated with their	
			lower FEV1 and	
			FVC z-scores but	
			not their	
			FEV1/FVC z-scores	
			of pREE	
Koh	CDH infants	Assessment of lung	1/3 of CDH patients	C-LD
(2021)[84]	at 5 y old	function by PFT	had lung	
	(n=28)	and CT chest (TLV)	dysfunction	
			correlating with	
			smaller	
			morphometric	
			markers at birth	
			(HC and abdominal	
			circumference) than	
			those with normal	
			lung function (2/3).	
			CT chest volumetric	
			studies did not	
			correlate with	
			standard CDH	
			severity categories	
			other than longer	
			ventilation days for	
			TLV <50% and	
			correlated with PFT	
			results showing	
			 "lung dysfunction'.	
Ramaraj	CDH neo	Assessment of	8 patients had	C-LD
(2021)[85]	(n=69)	aspiration with oral	documented	
		feeding	aspiration with	
			feeds while	
			inpatients and 17 as	

				outpatients using VFSS, requiring interventions including altering consistency, feeding volume or tube feeds. Aspiration did not correlate with	
Moawd (2020)[86]	CDH children (n=40)	Single-center RCT for respiratory muscle training exercises and impact on respiratory function, exercise capacity, functional performance and QoL	No training exercises (incentive spirometer only)	severity of CDH. Training group compared to control group performed better on standard PFT's over time. Study group also had higher QoL scores and higher exercise capacity/functional performance second	B-R
Antiel (2017)[87]	CDH survivors (n=84)	CDH survivors assessed at age 12 months with BSID- III and growth trajectory		51% scored 1 SD below mean in at least 1 domain (cognitive, language, motor) and growth (weight, length, HC z- scores) grouped as "high" or low" trajectory cohorts. Correlation between HC z-scores with motor scores- "high" cohort score higher on motor testing than "low" cohort. Lower motor scores correlated with longer LOS, length of ventilation and d/c on tube feeds.	C-LD

Wong	CDH infants	Assessment of		PH in this cohort	C-LD
(2019)[88]	(n=42)	pulmonary		generally improved	
		hypertension and		as indicated by	
		lung perfusion		serial echo	
		defects in patients		assessments but	
		assessed up to age 5		lung perfusion bias	
		1 0		did not "normalize".	
Terui	CDH neo	Multi-centre	Severe vs.	WGV negative in	B-NR
(2021)[89]	(n=109)	retrospective study	non-severe	early infancy (age	
		(Japanese CDHSG)	cohorts	1-3 months for all	
		assessing weight		CDH infants but	
		gain velocity		worse in severe	
				(Terui's risk	
				stratification)	
				compared to non-	
				severe group. Both	
				groups were slow to	
				gain weight but	
				non-severe patients	
				with also more	
				affected. Patients on	
				home O2 also had	
				lower WGV.	
Schwab	CDH neo	Retrospective study		GT use correlated	C-LD
(2021)[90]	(n=101)	of gastrostomy tube		with severe CDH	
		use (n=38)		such as lower	
				APGAR, patch	
				repair, longer LOS	
				and ventilation	
				days, delayed oral	
				feeding. GT's	
				generally removed	
				(median age 26 mo)	
				with some drop of	
				weight post	
				removal.	
Leeuwen	CDH	Single-centre	ECMO	1/3 had documented	B-NR
(2017)[91]	survivors	prospective study to	(n=43) vs.	GERD and 12%	
	(n=172)	assess growth up to	non-ECMO	were symptomatic	
		age 12 years	(n=129)	requiring Nissen.	
				All CDH patients	
				exhibited lower	
				weight-for-height	
				metrics but ECMO	
				patients were	
				lowest, this gap	

12 years for ECMO patients. All growth metrics negatively correlated with ECMO support, LOS, patch repair, tube feeding and fortification requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
patients. All growth metrics negatively correlated with ECMO support, LOS, patch repair, tube feeding and fortification requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
metrics negatively correlated with ECMO support, LOS, patch repair, tube feeding and fortification requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
correlated with ECMO support, LOS, patch repair, tube feeding and fortification requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
ECMO support, LOS, patch repair, tube feeding and fortification requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
LOS, patch repair, tube feeding and fortification requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
tube feeding and fortification requirement, especially at early age points.Increased nutritional and growth monitoring with dietary consultation and
fortification requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
requirement, especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
especially at early age points. Increased nutritional and growth monitoring with dietary consultation and
age points. Increased nutritional and growth monitoring with dietary consultation and
Increased nutritional and growth monitoring with dietary consultation and
nutritional and growth monitoring with dietary consultation and
growth monitoring with dietary consultation and
with dietary consultation and
consultation and
interventions
required in LTFU.
Bevilacqua CDH neo Single-centre BSID-III scores C-LD
(2017)[92] (n=49) retrospective study correlated
to determine if total negatively with
ventilatory time length of VT in all
(VT) for non- 3 domains
ECMO treated (language, motor,
patients affect cognitive) with
neurodevelopmental ROC curve showing
outcomes VT predictive of
delay in motor and
cognitive scales.
The VT "cut off"
for delay outcomes
was 9 days.
Danzer CDH infants Single centre Non-CDH More CDH patients C-LD
(2017)[93] (n=35) retrospective review infant scored borderline or
of CDH patients controls extremely low in at
tested at 5 years for least 1 domain
cognition, compared to
visual/motor, controls despite the
academic and cohort mean scores
behavioural scores being in the
normal/expected
range for cognitive
tests. CDH patients
had significantly
lower visual/motor

			testing and	
			behavioral scores;	
			also higher	
			incidence of autism	
			among CDH	
			patients than	
			population	
			incidence. Worse	
			cognitive outcomes	
			at age 5 correlated	
			with more severe	
			physiology (longer	
			LOS, prolonged	
			intubation. PH.	
			hearing impairment.	
			developmental	
			delays and autism	
			identified in early	
			infancy.	
Gunn-	CDH	Retrospective	83 patients had ND	C-LD
Charlton	survivors	review of the use of	assessments at age	
(2019)[94]	(n=83)	MRI neuroimaging	2 v (n=48), 5 v	
		with ND	n=32) and 8 v	
		assessments in	(n=29) but only 65	
		CDH survivors	had MRI's while	
			119 had head US.	
			Low ND < 1SD	
			associated with	
			severe CDH and	
			abN head US	
			correlated with	
			lower motor and	
			cognitive scores	
			No correlation	
			between working	
			memory testing and	
			US imaging abN	
			MRI documented	
			changes in white	
			matter and	
			myelination	
			changes correlated	
			with lower motor	
			language scores at	
			anguage scores at	
			age 2 y. INO IIIIaging	
			maings correlated	

11 NTD

			with ND outcomes	
			at age 5 and 8 y-	
			correlated with	
			clinical risk factors.	
Van der	CDH neo	Meta-analysis of	4 studies met	B-BR
Veeken		neurodevelopmental	inclusion criteria.	
(2021)[95]		outcomes for CDH	ND delay identified	
			in 16% (3-34%)-	
			motor 13%,	
			cognitive 5%.	
			hearing loss 3%.	
			ND delay lower in	
			isolated CDH	
			compared to CDH	
			patients with other	
			diagnoses	
Audin	Срн	Detrogractive study	MSV abangas	CID
Ayulli (2010)[06]	CDH	of MSK morbidity	mosant in all risk	C-LD
(2019)[90]	survivors		present in an risk	
	(n=98)	among left-sided	categories (defect	
		CDH survivors	size, prenatal risk	
			stratification) and	
			repair group	
			(primary repair,	
			patch repair, muscle	
			flap repair) but	
			patch/muscle flap	
			repair had highest	
			rate of MSK change	
			for scoliosis and	
			scoliosis + pectus	
			excavatum	
			respectively.	
			Delayed closure of	
			laparotomy incision	
			also associated with	
			MSK defects	
Burgos	CDH late	Retrospective	Overall and in total-	C-LD
(2017)[97]	deaths	single-centre study	49(20%) deaths	C LD
(2017)[27]	(n-251)	of "late deaths"	Deaths before d/c	
	(11-2.51)	of face deatins	(36, 1/%) vs 13	
			(50, 170) vs. 15 (5%) ofter d/a	
			differed in the cause	
			of dooth "action"	
			of death- early	
			mortality from	
			cardiorespiratory	
			causes but "late"	

		(age > 1 year, n=7)	
		due to GI	
		complications (n=3)	
		or progression of	
		cardiopulmonary	
		morbidity (n=4).	
		Recurrent CDH was	
		a common finding	
		among late	
		mortality patients	
		(3/7) but recurrence	
		or GI deaths did not	
		correlate with CDH	
		severity but were	
		affected by	
		developmental	
		issues and more	
		likely to have other	
		congenital	
		anomalies.	

*11 papers were excluded due to lack of relevance relating to CDH and LFTU. 4 studies were excluded at the discretion of the steering committee due to relevance. 1 paper was excluded as it was a review paper.

Table 15: Evidence summary regarding pain,	analgesia and neuromuscular blockade
management in CDH	

Author	Population	Intervention	Comparison	Outcome	Class of Evidence
Weems (2023)[98]	1063 infants with CDH from CHNC registry	Descriptions of opiod, sedative and NM paralytic agent use (no doses or durations)	3 groups: All patients (1063) ECMO (315) No ECMO (748) Subgroups: pre and post repair	Survival, need for ECMO Inter-center variability for duration of use of opioid, benzo, paralytic	B-NR
Abiramalatha (2019)[99]	Neonates requiring 24- 48h of mechanical ventilation	Open label RCT wih fentanyl as CI vs IB	100 neonates (53 CI, 47 IB)	Pharmacokinetics (peaks and troughs) more favorable with CI. Pain scores, adverse events comparable	B-R
Ancora (2019)[100]	Term, preterm infants requiring mechanical ventilation. Evidence review 1986- 2017) GRADE				B-NR
Ohlsson (2016)[101]	Use of paracetamol in newborns undergoing painful procedures or as part of postop analgesia	9 trials w low risk of bias (728 infants)	Treatment/outcom es varied widely between groups	For postoperative care following major surgery, total opioid dose administered over 48h less in paracetamol group	B-NR
Baarslag (2018)[102]	Infants undergoing non-cardiac major surgery	Implementation cohort of postoperative paracetamol (n=75) based on findings of previous RCT PMID 23299606	No comparison group	Opioid sparing effect noted (similar to previous RCT) with lower pain scores vs RCT cohort	C-LD

-reduced postop intubation

duration

Grabski (2022)[103]	Infants undergoing CDH repair	Multi-modal intervention targeting reduced opioid use post-CDH repair 1.IV acetaminophen 2.Education	3 groups: pre (n=18), peri (n=6), post (n=21) intervention	Main outcomes (intervention cohort): -Significantly reduced total opioid use -equivalent pain/sedation scores	B-NR

*One article (McPherson et al) was excluded as it was a review article ineligible for data abstraction. 2 articles were excluded due to relevance.

3.Standardized

pain handover

References

- Kammoun M, Souche E, Brady P, et al. Genetic profile of isolated congenital diaphragmatic hernia revealed by targeted next-generation sequencing. *Prenatal Diagnosis* 2018;38(9):654-63.
- Zhu Q, High FA, Zhang C, et al. Systematic analysis of copy number variation associated with congenital diaphragmatic hernia. *Proceedings of the National Academy of Sciences* 2018;115(20):5247-52.
- Schwab ME, Dong S, Lianoglou BR, et al. Exome sequencing of fetuses with congenital diaphragmatic hernia supports a causal role for NR2F2, PTPN11, and WT1 variants. *American Journal of Surgery* 2022;223(1):182-86. doi: doi:<u>https://dx.doi.org/10.1016/j.amjsurg.2021.07.016</u>
- 4. Sferra SR, Miller JL, Cortes MS, et al. Postnatal care setting and survival after fetoscopic tracheal occlusion for severe congenital diaphragmatic hernia: A systematic review and meta-analysis. *Journal of Pediatric Surgery* 2022;19:19. doi: doi:<u>https://dx.doi.org/10.1016/j.jpedsurg.2022.05.011</u>
- Wild KT, Schindewolf E, Hedrick HL, et al. The Genomics of Congenital Diaphragmatic Hernia: A 10-Year Retrospective Review. *Journal of Pediatrics* 2022;14:14. doi: doi:<u>https://dx.doi.org/10.1016/j.jpeds.2022.04.012</u>
- 6. Danzer E, Chock VY, Chung S, et al. Image-based prenatal predictors of postnatal survival, extracorporeal life support, and defect size in right congenital diaphragmatic hernia. *Journal of Perinatology* 2022;3:03. doi: doi:<u>https://dx.doi.org/10.1038/s41372-022-01470-x</u>
- Abbasi N, Ryan G, Johnson A, et al. Reproducibility of fetal lung-to-head ratio in left diaphragmatic hernia across the N orth A merican F etal T herapy N etwork (NAFTNet). *Prenatal diagnosis* 2019;39(3):188-94.
- 8. Russo F, Cordier AG, Basurto D, et al. Fetal endoscopic tracheal occlusion reverses the natural history of right-sided congenital diaphragmatic hernia: European multicenter experience. *Ultrasound in Obstetrics & Gynecology* 2021;57(3):378-85.
- Bouchghoul H, Dumery G, Russo F, et al. Optimal gestational age at delivery in isolated leftsided congenital diaphragmatic hernia. *Ultrasound in Obstetrics & Gynecology* 2021;57(6):968-73.
- Wang X, Shi Q, Pan W, et al. Mediastinal Shift Angle in Fetal MRI Is Associated With Prognosis, Severity, and Cardiac Underdevelopment in Left Congenital Diaphragmatic Hernia. *Frontiers in Pediatrics* 2022;10:907724. doi: doi:<u>https://dx.doi.org/10.3389/fped.2022.907724</u>
- 11. Weller K, Peters NCJ, van Rosmalen J, et al. Prenatal stomach position and volume in relation to postnatal outcomes in left-sided congenital diaphragmatic hernia. *Prenatal Diagnosis* 2022;42(3):338-47. doi: doi:https://dx.doi.org/10.1002/pd.6019
- Oluyomi-Obi T, Kuret V, Puligandla P, et al. Antenatal predictors of outcome in prenatally diagnosed congenital diaphragmatic hernia (CDH). *Journal of pediatric surgery* 2017;52(5):881-88.
- Senat MV, Bouchghoul H, Stirnemann J, et al. Prognosis of isolated congenital diaphragmatic hernia using lung-area-to-head-circumference ratio: variability across centers in a national perinatal network. *Ultrasound in Obstetrics & Gynecology* 2018;51(2):208-13.

- Belfort MA, Olutoye OO, Cass DL, et al. Feasibility and outcomes of fetoscopic tracheal occlusion for severe left diaphragmatic hernia. *Obstetrics & Gynecology* 2017;129(1):20-29.
 Baschat AA, Rosner M, Millard SE, et al. Single-center outcome of fetoscopic tracheal balloon occlusion for severe congenital diaphragmatic hernia. *Obstetrics & Gynecology* 2020;135(3):511-21.
 Deprest JA, Benachi A, Gratacos E, et al. Randomized trial of fetal surgery for moderate left
- 16. Deprest JA, Benachi A, Gratacos E, et al. Randomized trial of fetal surgery for moderate left diaphragmatic hernia. *New England journal of medicine* 2021;385(2):119-29. doi: doi:10.1056/NEJMoa2026983
- 17. Deprest JA, Nicolaides KH, Benachi A, et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. *New England Journal of Medicine* 2021;385(2):107-18.
- 18. Van Calster B, Benachi A, Nicolaides K, et al. The randomized TOTAL-trials on fetal surgery for congenital diaphragmatic hernia: re-analysis using pooled data. American Journal of Obstetrics and Gynecology 2021
- Russo FM, Toelen J, Eastwood MP, et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. *Thorax* 2016:thoraxjnl-2015-207949.
- 20. Russo FM, Benachi A, Van Mieghem T, et al. Antenatal sildenafil administration to prevent pulmonary hypertension in congenital diaphragmatic hernia (SToP-PH): study protocol for a phase I/IIb placenta transfer and safety study. *Trials* 2018;19(1):524.
- 21. Gerall C, Wallman-Stokes A, Stewart L, et al. High-Frequency Positive Pressure Ventilation as Primary Rescue Strategy for Patients with Congenital Diaphragmatic Hernia: A Comparison to High-Frequency Oscillatory Ventilation. *American Journal of Perinatology* 2021;16:16. doi: doi:https://dx.doi.org/10.1055/s-0041-1740076
- 22. Cochius-den Otter S, Horn-Oudshoorn EJ, Allegaert K, et al. Routine intubation in newborns with congenital diaphragmatic hernia. *Pediatrics* 2020;146(4)
- 23. Derraugh G, Levesque M, Schantz D, et al. High-frequency vs. conventional ventilation at the time of CDH repair is not associated with higher mortality and oxygen dependency: a retrospective cohort study. *Pediatric Surgery International* 2020;36(11):1275-80. doi: 10.1007/s00383-020-04740-x
- 24. Fuyuki M, Usui N, Taguchi T, et al. Prognosis of conventional vs. high-frequency ventilation for congenital diaphragmatic hernia: a retrospective cohort study. *Journal of Perinatology* 2021;41(4):814-23.
- 25. Kurland Y, Gurung K, Pallotto EK, et al. Neurally adjusted ventilatory assist in neonates with congenital diaphragmatic hernia. *Journal of Perinatology* 2021;41(8):1910-15.
- Meinen RD, Alali YI, Al-Subu A, et al. Neurally-adjusted ventilatory assist can facilitate extubation in neonates with congenital diaphragmatic hernia. *Respiratory Care* 2021;66(1):41-49.
- 27. Wise AC, Boutin MA, Knodel EM, et al. Heliox adjunct therapy for neonates with congenital diaphragmatic hernia. *Respiratory Care* 2018;63(9):1147-53.
- 28. Liberio BM, Brinton JT, Gist KM, et al. Risk factors for acute kidney injury in neonates with congenital diaphragmatic hernia. *Journal of Perinatology* 2021;41(8):1901-09. doi: 10.1038/s41372-021-01119-1
- 29. Arattu Thodika FMS, Dassios T, Deep A, et al. Acute kidney injury in infants with congenital diaphragmatic hernia. *Journal of Perinatology* 2022;42(7):925-29. doi: doi:<u>https://dx.doi.org/10.1038/s41372-022-01378-6</u>

- 30. Ferguson DM, Gupta VS, Lally PA, et al. Early, Postnatal Pulmonary Hypertension Severity Predicts Inpatient Outcomes in Congenital Diaphragmatic Hernia. *Neonatology* 2021;118(2):147-54. doi: 10.1159/000512966
- 31. Gupta VS, Patel N, Kipfmueller F, et al. Elevated proBNP levels are associated with disease severity, cardiac dysfunction, and mortality in congenital diaphragmatic hernia. *Journal* of Pediatric Surgery 2021;56(6):1214-19. doi: <u>https://doi.org/10.1016/j.jpedsurg.2021.02.042</u>
- 32. Yang MJ, Fenton S, Russell K, et al. Left-sided congenital diaphragmatic hernia: can we improve survival while decreasing ECMO? *J Perinatol* 2020;40(6):935-42. doi: 10.1038/s41372-020-0615-3 [published Online First: 2020/02/19]
- 33. Altit G, Bhombal S, Van Meurs K, et al. Ventricular Performance is Associated with Need for Extracorporeal Membrane Oxygenation in Newborns with Congenital Diaphragmatic Hernia. *The Journal of Pediatrics* 2017;191:28-34.e1. doi: https://doi.org/10.1016/j.jpeds.2017.08.060
- 34. Guslits E, Steurer MA, Nawaytou H, et al. Longitudinal B-Type Natriuretic Peptide Levels Predict Outcome in Infants with Congenital Diaphragmatic Hernia. *The Journal of Pediatrics* 2021;229:191-98.e2. doi: <u>https://doi.org/10.1016/j.jpeds.2020.09.064</u>
- 35. Avitabile CM, Wang Y, Zhang X, et al. Right Ventricular Strain, Brain Natriuretic Peptide, and Mortality in Congenital Diaphragmatic Hernia. *Annals of the American Thoracic Society* 2020;17(11):1431-39. doi: 10.1513/AnnalsATS.201910-767OC
- 36. Aggarwal S, Shanti C, Agarwal P, et al. Echocardiographic measures of ventricular-vascular interactions in congenital diaphragmatic hernia. *Early Human Development* 2022;165:105534. doi: doi:https://dx.doi.org/10.1016/j.earlhumdev.2021.105534
- 37. Kipfmueller F, Akkas S, Pugnaloni F, et al. Echocardiographic Assessment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia Using Pulmonary Artery Flow Characteristics. *Journal of Clinical Medicine* 2022;11(11):27. doi: doi:https://dx.doi.org/10.3390/jcm11113038
- Guner Y, Jancelewicz T, Di Nardo M, et al. Management of Congenital Diaphragmatic Hernia Treated With Extracorporeal Life Support: Interim Guidelines Consensus Statement From the Extracorporeal Life Support Organization. ASAIO J 2021;67(2):113-20. doi: 10.1097/MAT.00000000001338 [published Online First: 2021/01/30]
- 39. Patel N, Lally PA, Kipfmueller F, et al. Ventricular Dysfunction Is a Critical Determinant of Mortality in Congenital Diaphragmatic Hernia. American Journal of Respiratory and Critical Care Medicine 2019;200(12):1522-30. doi: 10.1164/rccm.201904-07310C
- 40. Le Duc K, Mur S, Sharma D, et al. Antenatal Assessment of the Prognosis of Congenital Diaphragmatic Hernia: Ethical Considerations and Impact for the Management. *Healthcare* 2022;10(8):30. doi: doi:https://dx.doi.org/10.3390/healthcare10081433
- 41. Lawrence KM, Berger K, Herkert L, et al. Use of prostaglandin E1 to treat pulmonary hypertension in congenital diaphragmatic hernia. *Journal of Pediatric Surgery* 2019;54(1):55-59. doi: https://doi.org/10.1016/j.jpedsurg.2018.10.039
- Jozefkowicz M, Haag DF, Mazzucchelli MT, et al. Neonates Effects and Tolerability of Treprostinil in Hypertension with Persistent Pulmonary. *Am J Perinatol* 2020;37(09):939-46. doi: 10.1055/s-0039-1692182 [published Online First: 2019/06/05]
- 43. Turbenson MN, Radosevich JJ, Manuel V, et al. Transitioning from intravenous to subcutaneous prostacyclin therapy in neonates with severe pulmonary hypertension. *The Journal of Pediatric Pharmacology and Therapeutics* 2020;25(7):647-53.

44. Carpentier E, Mur S, Aubry E, et al. Safety and tolerability of subcutaneous treprostinil in
newborns with congenital diaphragmatic hernia and life-threatening pulmonary
hypertension. Journal of Pediatric Surgery 2017;52(9):1480-83. doi:
https://doi.org/10.1016/j.jpedsurg.2017.03.058

- 45. Lawrence KM, Hedrick HL, Monk HM, et al. Treprostinil Improves Persistent Pulmonary Hypertension Associated with Congenital Diaphragmatic Hernia. *The Journal of Pediatrics* 2018;200:44-49. doi: <u>https://doi.org/10.1016/j.jpeds.2018.04.052</u>
- 46. Jancelewicz T, Langham MR, Jr., Brindle ME, et al. Survival Benefit Associated With the Use of Extracorporeal Life Support for Neonates With Congenital Diaphragmatic Hernia. *Ann Surg* 2022;275(1):e256-e63. doi: 10.1097/sla.00000000003928 [published Online First: 2020/10/17]
- 47. Delaplain PT, Zhang L, Chen Y, et al. Cannulating the contraindicated: effect of low birth weight on mortality in neonates with congenital diaphragmatic hernia on extracorporeal membrane oxygenation. *J Pediatr Surg* 2017;52(12):2018-25. doi: 10.1016/j.jpedsurg.2017.08.037 [published Online First: 2017/09/25]
- 48. Mesas Burgos C, Öst E, Frenckner B. Re-ECMO for congenital diaphragmatic hernia: Is it worth the effort? *J Pediatr Surg* 2020;55(11):2289-92. doi: 10.1016/j.jpedsurg.2020.04.005 [published Online First: 2020/07/06]
- 49. Gien J, Kinsella JP, Behrendt NJ, et al. Improved survival for infants with severe congenital diaphragmatic hernia. *J Perinatol* 2022;42(9):1189-94. doi: 10.1038/s41372-022-01397-3 [published Online First: 2022/04/25]
- 50. Zheng H, Gong C, Chapman R, et al. Cost-effectiveness analysis of extended extracorporeal membrane oxygenation duration in newborns with congenital diaphragmatic hernia in the United States. *Pediatrics & Neonatology* 2022;63(2):139-45. doi: doi:https://dx.doi.org/10.1016/j.pedneo.2021.08.015
- 51. Snyder AN, Cheng T, Burjonrappa S. A nationwide database analysis of demographics and outcomes related to Extracorporeal Membrane Oxygenation (ECMO) in congenital diaphragmatic hernia. *Pediatric Surgery International* 2021;37(11):1505-13. doi: doi:https://dx.doi.org/10.1007/s00383-021-04979-y
- 52. Burgos CM, Frenckner B, Broman LM. Premature and Extracorporeal Life Support: Is it Time? A Systematic Review. ASAIO Journal 2022;68(5):633-45. doi: doi:<u>https://dx.doi.org/10.1097/MAT.000000000001555</u>
- 53. Guner YS, Harting MT, Jancelewicz T, et al. Variation across centers in standardized mortality ratios for congenital diaphragmatic hernia receiving extracorporeal life support. *Journal of Pediatric Surgery* 2022;31:31. doi: doi:https://dx.doi.org/10.1016/j.jpedsurg.2022.01.022
- 54. Herco M, Sloan P, Vogel A, et al. Survival and Neurodevelopmental Outcomes in Congenital Diaphragmatic Hernia Patients with Single versus Repeat Extracorporeal Membrane Oxygenation Runs. American Journal of Perinatology 2022;25:25. doi: doi:<u>https://dx.doi.org/10.1055/a-1877-9225</u>
- 55. Harting MT, Hollinger L, Tsao K, et al. Aggressive Surgical Management of Congenital Diaphragmatic Hernia: Worth the Effort?: A Multicenter, Prospective, Cohort Study. Ann Surg 2018;267(5):977-82. doi: 10.1097/SLA.00000000002144 [published Online First: 2017/01/31]

- 56. Liu Q, Hong C, Li X, et al. Surgical Timing in Left Mild-to-Moderate Congenital Diaphragmatic Hernia. *Iranian Journal of Pediatrics* 2021;31 doi: doi:<u>https://dx.doi.org/10.5812/IJP.114111</u>
- 57. Cox KJ, Yang MJ, Fenton SJ, et al. Operative repair in congenital diaphragmatic hernia: How long do we really need to wait? *Journal of Pediatric Surgery* 2022;57(9):17-23. doi: doi:<u>https://dx.doi.org/10.1016/j.jpedsurg.2022.01.020</u>
- 58. Ruhrnschopf CG, Reusmann A, Boglione M, et al. Biological versus synthetic patch for the repair of congenital diaphragmatic hernia: 8-year experience at a tertiary center. *Journal of Pediatric Surgery* 2021;56(11):1957-61.
- 59. Suply E, Rees C, Cross K, et al. Patch repair of congenital diaphragmatic hernia is not at risk of poor outcomes. *Journal of Pediatric Surgery* 2020;55(8):1522-27.
- 60. Long A-M, Bunch KJ, Knight M, et al. One-year outcomes of infants born with congenital diaphragmatic hernia: a national population cohort study. *Archives of Disease in Childhood Fetal and Neonatal Edition* 2019;104(6):F643-F47. doi: 10.1136/archdischild-2018-316396
- 61. Heiwegen K, de Blaauw I, Botden S. A systematic review and meta-analysis of surgical morbidity of primary versus patch repaired congenital diaphragmatic hernia patients. *Scientific Reports* 2021;11(1):12661. doi: doi:<u>https://dx.doi.org/10.1038/s41598-021-91908-7</u>
- 62. Aydın E, Nolan H, Peiró JL, et al. When primary repair is not enough: a comparison of synthetic patch and muscle flap closure in congenital diaphragmatic hernia? *Pediatr Surg Int* 2020;36(4):485-91. doi: 10.1007/s00383-020-04634-y [published Online First: 2020/03/05]
- 63. Dewberry L, Hilton S, Gien J, et al. Flap repair in congenital diaphragmatic hernia leads to lower rates of recurrence. *J Pediatr Surg* 2019;54(12):2487-91. doi: 10.1016/j.jpedsurg.2019.08.042 [published Online First: 2019/09/14]
- 64. Kamal TR, Tyraskis A, Ghattaura H, et al. Synthetic versus Biological Patches for CDH: A Comparison of Recurrence Rates and Adverse Events, Systematic Review, and Meta-Analysis. *European Journal of Pediatric Surgery* 2022;26:26. doi: doi:<u>https://dx.doi.org/10.1055/s-0042-1748530</u>
- 65. Nolan H, Aydin E, Frischer JS, et al. Hemorrhage after on-ECMO repair of CDH is equivalent for muscle flap and prosthetic patch. *J Pediatr Surg* 2019;54(10):2044-47. doi: 10.1016/j.jpedsurg.2019.04.025 [published Online First: 2019/05/20]
- 66. Bawazir OA, Bawazir A. Congenital diaphragmatic hernia in neonates: Open versus thoracoscopic repair. *African Journal of Paediatric Surgery: AJPS* 2021;18(1):18.
- 67. Vandewalle RJ, Yalcin S, Clifton MS, et al. Biologic Mesh Underlay in Thoracoscopic Primary Repair of Congenital Diaphragmatic Hernia Confers Reduced Recurrence in Neonates: A Preliminary Report. *J Laparoendosc Adv Surg Tech A* 2019;29(10):1212-15. doi: 10.1089/lap.2019.0122 [published Online First: 2019/06/21]
- 68. Okawada M, Ohfuji S, Yamoto M, et al. Thoracoscopic repair of congenital diaphragmatic hernia in neonates: findings of a multicenter study in Japan. *Surgery today* 2021;51:1694-702.
- 69. Elbarbary MM, Fares AE, Marei MM, et al. Thoracoscopic repair of congenital diaphragmatic hernia: a new anatomical reconstructive concept for tension dispersal at primary closure. *Surgical Endoscopy* 2021;35:3279-84.

- 70. Kotb M, Shehata S, Khairi A, et al. Thoracoscopic Repair of Neonatal Congenital Diaphragmatic Hernia: Minimizing Open Repair in a Low-Income Country. *Journal of Laparoendoscopic & Advanced Surgical Techniques Part A* 2021;31(11):1341-45. doi: doi:<u>https://dx.doi.org/10.1089/lap.2021.0210</u>
- 71. Stewart LA, Klein-Cloud R, Gerall C, et al. Extracorporeal Membrane Oxygenation (ECMO) and its complications in newborns with congenital diaphragmatic hernia. *Journal of Pediatric Surgery* 2022;57(8):1642-48. doi: doi:https://dx.doi.org/10.1016/j.jpedsurg.2021.12.028
- 72. Dao DT, Burgos CM, Harting MT, et al. Surgical Repair of Congenital Diaphragmatic Hernia After Extracorporeal Membrane Oxygenation Cannulation: Early Repair Improves Survival. Ann Surg 2021;274(1):186-94. doi: 10.1097/SLA.000000000003386 [published Online First: 2019/08/20]
- 73. Glenn IC, Abdulhai S, Lally PA, et al. Early CDH repair on ECMO: Improved survival but no decrease in ECMO duration (A CDH Study Group Investigation). *J Pediatr Surg* 2019;54(10):2038-43. doi: 10.1016/j.jpedsurg.2019.01.063 [published Online First: 2019/03/23]
- 74. Steen EH, Lee TC, Vogel AM, et al. Congenital diaphragmatic hernia repair in patients on extracorporeal membrane oxygenation: How early can we repair? *J Pediatr Surg* 2019;54(1):50-54. doi: 10.1016/j.jpedsurg.2018.10.038 [published Online First: 2018/11/30]
- 75. Delaplain PT, Harting MT, Jancelewicz T, et al. Potential survival benefit with repair of congenital diaphragmatic hernia (CDH) after extracorporeal membrane oxygenation (ECMO) in select patients: Study by ELSO CDH Interest Group. *J Pediatr Surg* 2019;54(6):1132-37. doi: 10.1016/j.jpedsurg.2019.02.052 [published Online First: 2019/03/23]
- 76. Robertson JO, Criss CN, Hsieh LB, et al. Comparison of early versus delayed strategies for repair of congenital diaphragmatic hernia on extracorporeal membrane oxygenation. J Pediatr Surg 2018;53(4):629-34. doi: 10.1016/j.jpedsurg.2017.10.056 [published Online First: 2017/11/28]
- 77. Danzer E, Hoffman C, D'Agostino JA, et al. Short-Term Neurodevelopmental Outcome in Congenital Diaphragmatic Hernia: The Impact of Extracorporeal Membrane Oxygenation and Timing of Repair. *Pediatr Crit Care Med* 2018;19(1):64-74. doi: 10.1097/PCC.00000000001406 [published Online First: 2018/01/06]
- 78. Montalva L, Carricaburu E, Sfeir R, et al. Anti-reflux surgery in children with congenital diaphragmatic hernia: A prospective cohort study on a controversial practice. *Journal of Pediatric Surgery* 2022;27:27. doi: doi:<u>https://dx.doi.org/10.1016/j.jpedsurg.2022.04.017</u>
- 79. Zanini A, Macchini F, Farris G, et al. Follow-up of Congenital Diaphragmatic Hernia: Need for Routinary Assessment of Acid Gastroesophageal Reflux with pH-metry. *Eur J Pediatr Surg* 2018;28(6):502-07. doi: 10.1055/s-0037-1607290 [published Online First: 2017/10/12]
- Henzler C, Zöllner FG, Weis M, et al. Cerebral Perfusion After Repair of Congenital Diaphragmatic Hernia with Common Carotid Artery Occlusion After ECMO Therapy. *In Vivo* 2017;31(4):557-64. doi: 10.21873/invivo.11094 [published Online First: 2017/06/28]
- 81. Wong M, Reyes J, Lapidus-Krol E, et al. Pulmonary hypertension in congenital diaphragmatic hernia patients: Prognostic markers and long-term outcomes. *J Pediatr*

Surg 2018;53(5):918-24. doi: 10.1016/j.jpedsurg.2018.02.015 [published Online First: 2018/03/06]

- 82. Bojanic K, Woodbury JM, Cavalcante AN, et al. Congenital diaphragmatic hernia: outcomes of neonates treated at Mayo Clinic with and without extracorporeal membrane oxygenation. *Paediatr Anaesth* 2017;27(3):314-21. doi: 10.1111/pan.13046 [published Online First: 2017/02/18]
- 83. Haliburton B, Mouzaki M, Chiang M, et al. Pulmonary function and nutritional morbidity in children and adolescents with congenital diaphragmatic hernia. *J Pediatr Surg* 2017;52(2):252-56. doi: 10.1016/j.jpedsurg.2016.11.020 [published Online First: 2016/12/04]
- 84. Koh JY, Jung E, Goo HW, et al. Functional and structural evaluation in the lungs of children with repaired congenital diaphragmatic hernia. *BMC Pediatr* 2021;21(1):120. doi: 10.1186/s12887-021-02586-3 [published Online First: 2021/03/13]
- Ramaraj AB, Foster C, Stark RA. Epidemiology of swallow dysfunction in CDH patients. *Am J Surg* 2021;221(6):1267-70. doi: 10.1016/j.amjsurg.2021.03.015 [published Online First: 2021/03/31]
- 86. Moawd SA, Azab AR, Ibrahim ZM, et al. Impacts of Respiratory Muscle Training on Respiratory Functions, Maximal Exercise Capacity, Functional Performance, and Quality of Life in School-Aged Children with Postoperative Congenital Diaphragmatic Hernia. *Dis Markers* 2020;2020:8829373. doi: 10.1155/2020/8829373 [published Online First: 2020/09/24]
- Antiel RM, Lin N, Licht DJ, et al. Growth trajectory and neurodevelopmental outcome in infants with congenital diaphragmatic hernia. *J Pediatr Surg* 2017;52(12):1944-48. doi: 10.1016/j.jpedsurg.2017.08.063 [published Online First: 2017/10/29]
- Wong MKW, Haliburton B, Graham A, et al. Requirement and Duration of Tube Feed Supplementation among Congenital Diaphragmatic Hernia Patients. *J Pediatr Surg* 2019;54(5):895-98. doi: 10.1016/j.jpedsurg.2019.01.017 [published Online First: 2019/02/19]
- Terui K, Tazuke Y, Nagata K, et al. Weight gain velocity and adequate amount of nutrition for infants with congenital diaphragmatic hernia. *Pediatr Surg Int* 2021;37(2):205-12. doi: 10.1007/s00383-020-04785-y [published Online First: 2020/11/29]
- 90. Schwab ME, Burke S, Klarich MK, et al. Factors and Growth Trends Associated With the Need for Gastrostomy Tube in Neonates With Congenital Diaphragmatic Hernia. J Pediatr Gastroenterol Nutr 2021;73(4):555-59. doi: 10.1097/mpg.000000000003203 [published Online First: 2021/06/13]
- 91. Leeuwen L, Mous DS, van Rosmalen J, et al. Congenital Diaphragmatic Hernia and Growth to 12 Years. *Pediatrics* 2017;140(2) doi: 10.1542/peds.2016-3659 [published Online First: 2017/07/16]
- 92. Bevilacqua F, Morini F, Zaccara A, et al. Does Ventilatory Time Retain Its Validity in Predicting Neurodevelopmental Outcome at Two Years of Age in High-Risk Congenital Diaphragmatic Hernia Survivors? *Am J Perinatol* 2017;34(3):248-52. doi: 10.1055/s-0036-1586120 [published Online First: 2016/07/28]
- 93. Danzer E, Hoffman C, D'Agostino JA, et al. Neurodevelopmental outcomes at 5years of age in congenital diaphragmatic hernia. *J Pediatr Surg* 2017;52(3):437-43. doi: 10.1016/j.jpedsurg.2016.08.008 [published Online First: 2016/09/14]

94. Gunn-Charlton JK, Burnett AC, Malarbi S, et al. Neonatal neuroimaging after repair of congenital diaphragmatic hernia and long-term neurodevelopmental outcome. *World Journal of Pediatric Surgery* 2019;2(3):e000037. doi: 10.1136/wjps-2019-000037

- 95. Van der Veeken L, Vergote S, Kunpalin Y, et al. Neurodevelopmental outcomes in children with isolated congenital diaphragmatic hernia: A systematic review and meta-analysis. *Prenat Diagn* 2021 doi: 10.1002/pd.5916 [published Online First: 2021/02/04]
- 96. Aydın E, Özler O, Burns P, et al. Left congenital diaphragmatic hernia-associated musculoskeletal deformities. *Pediatr Surg Int* 2019;35(11):1265-70. doi: 10.1007/s00383-019-04548-4 [published Online First: 2019/09/05]
- 97. Burgos CM, Modée A, Öst E, et al. Addressing the causes of late mortality in infants with congenital diaphragmatic hernia. *J Pediatr Surg* 2017;52(4):526-29. doi: 10.1016/j.jpedsurg.2016.08.028 [published Online First: 2016/09/15]
- 98. Weems MF, Grover TR, Seabrook R, et al. Analgesia, Sedation, and Neuromuscular Blockade in Infants with Congenital Diaphragmatic Hernia. *Am J Perinatol* 2023;40(4):415-23. doi: 10.1055/s-0041-1729877 [published Online First: 2021/05/28]
- 99. Abiramalatha T, Mathew SK, Mathew BS, et al. Continuous infusion versus intermittent bolus doses of fentanyl for analgesia and sedation in neonates: an open-label randomised controlled trial. *Arch Dis Child Fetal Neonatal Ed* 2019;104(4):F433-f39. doi: 10.1136/archdischild-2018-315345 [published Online First: 2018/10/17]
- 100. Ancora G, Lago P, Garetti E, et al. Evidence-based clinical guidelines on analgesia and sedation in newborn infants undergoing assisted ventilation and endotracheal intubation. *Acta Paediatr* 2019;108(2):208-17. doi: 10.1111/apa.14606 [published Online First: 2018/10/06]
- 101. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. *Cochrane Database Syst Rev* 2016;10(10):Cd011219. doi: 10.1002/14651858.CD011219.pub3 [published Online First: 2016/11/02]
- 102. Baarslag MA, Ista E, de Leeuw T, et al. Clinically effective implementation of intravenous paracetamol as primary analgesia after major surgery in neonates and young infants. Arch Dis Child 2018;103(12):1168-69. doi: 10.1136/archdischild-2018-315379 [published Online First: 2018/07/12]
- 103. Grabski DF, Vavolizza RD, Roecker Z, et al. Reduction of post-operative opioid use in neonates following open congenital diaphragmatic hernia repairs: A quality improvement initiative. *Journal of Pediatric Surgery* 2022;57(1):45-51. doi: doi:<u>https://dx.doi.org/10.1016/j.jpedsurg.2021.09.027</u>

CDH Guidelines Update Supplementary Material - Search Strategy

For ease of use, the following updates are shown once. All search updates were run from January 1, 2017 to August 30, 2022. Specific updates were run on May 22, 2020 June 17, 2021 and August 30, 2022. For the full original numbers, please contact the author.

Cochrane [Wiley] (August 30, 2022)

#1	((congenital* and hernia*) and (diaphragm* or repair* or defect*)):ti,ab,kw	272	
	((congenital* or neonat* or neo-nat* or newborn* or new-born* or birth* or maternal*		
	or fetal or fetus* or fetu or feto or foet* or prenatal* or pre-natal* or antenatal* or		
	ante-natal* or trimester* or pregnan* or uter* or preterm* or pre-term* or premature*		
	or pre-mature* or preemie*) NEAR/5 diaphragm* NEAR/5 (hernia* or		
#2	defect*)):ti,ab,kw	229	
#3	((bochdalek* or morgagni*)):ti,ab,kw	8	
#4	((agene*) AND (hernia* or hemidiaphragm* or diaphragm*)):ti,ab,kw	3	
#5	#1 OR #2 OR #4 OR #4	278	
#6	#1 OR #2 OR #4 OR #4 with Cochrane Library publication date from January 2017 to Sep 2022	31	

Embase [Ovid] (August 30, 2022)

Embase	Classic+Embase 1947 to 2022 August 29	
1	congenital diaphragm hernia/	6979
2	diaphragm hernia/ or bochdalek hernia/ or diaphragm eventration/ or hiatus hernia/ or traumatic diaphragmatic hernia/	27883
3	exp congenital disorder/	1690056
4	newborn intensive care/	27170
5	neonatal intensive care unit/	18019
6	exp prenatal diagnosis/	122716
7	exp pregnancy complication/	174876
8	exp child/	3339660
9	(infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf.	3473192
10	2 and (or/3-9)	8947
11	(agene* adj2 (hemidiaphragm* or diaphragm* or ((unilat* or hern*) adj1 diaphragm*))).tw,kf.	125
12	((bochdalek* or morgagni*) adj2 (hernia* or defect*)).tw,kf.	1754
13	((congenital* or neonat* or neo-nat* or newborn* or new-born* or birth* or maternal* or fetal or fetus* or fetu or feto or foet* or prenatal* or pre-natal* or antenatal* or ante-natal* or trimester* or pregnan* or uter* or preterm* or pre-term* or premature* or pre-mature* or preemie*) adj5 (posterolateral* or substernal*) adj2 hernia*).tw,kf.	109
14	((congenital* or neonat* or neo-nat* or newborn* or new-born* or birth* or maternal* or fetal or fetus* or fetu or feto or foet* or prenatal* or pre-natal* or antenatal* or ante-natal* or trimester* or pregnan* or uter* or preterm* or pre-term* or premature* or pre-mature* or preemie*) adj2 diaphragm* adj2 (hernia* or defect*)).tw,kf.	7414
15	(congenital* and hernia* and diaphragm*).tw,kf.	8482
16	(or/2-8) and (hernia* and diaphragm*).tw,kf.	14236
17	1 or (or/10-16)	21805
18	limit 17 to yr="2017 -Current"	1569

1/3	Elena Guadagno, MLIS Harvey E. Beardmore Division of Pediatric Surgery, Montreal Children's Hospital	elena.guadagno@muhc.mcgill.ca

19	(exp animal/ or exp juvenile animal/ or adult animal/ or animal cell/ or animal experiment/ or animal model/ or animal tissue/ or nonhuman/) not human/	7933232
20	((animal or animals or canine* or cat or cats or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*) not (human* or patient*)).ti,kf,jx.	3087095
21	18 not (19 or 20)	1478
22	remove duplicates from 21	1469
23	limit 22 to (conference abstract or conference paper or "conference review")	316
24	22 not 23	1153

Medline [Ovid] (August 30, 2022)

Hernias, Diaphragmatic, Congenital/ Hernia, Diaphragmatic/ limit 2 to yr="2010 - 2014" hernia, diaphragmatic/ or hernia, diaphragmatic, traumatic/ or hernia, hiatal/ exp "congenital, hereditary, and neonatal diseases and abnormalities"/ or exp congenital abnormalities/ Intensive Care, Neonatal/ or Intensive Care Units, Neonatal/ exp Prenatal Diagnosis/ exp Pregnancy Complications/ exp child/ or exp infant/ (infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or pre-mature* or pre-mature* or pre-emie*).tw,kf. 4 and (or/5-10)	5346 11621 1063 17046 1334598 22231 79719 463429 2706885 2569376
Hernia, Diaphragmatic/ limit 2 to yr="2010 - 2014" hernia, diaphragmatic/ or hernia, diaphragmatic, traumatic/ or hernia, hiatal/ exp "congenital, hereditary, and neonatal diseases and abnormalities"/ or exp congenital abnormalities/ Intensive Care, Neonatal/ or Intensive Care Units, Neonatal/ exp Prenatal Diagnosis/ exp child/ or exp infant/ (infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or pre-mature* or pre-mature* or pre-mature* or pre-mature* or pre-mature* or pre-mature* or pre-term* or pre-term* or pre-mature* or pre-mature* or pre-term* or	11621 1063 17046 1334598 22231 79719 463429 2706885 2569376
limit 2 to yr="2010 - 2014"hernia, diaphragmatic/ or hernia, diaphragmatic, traumatic/ or hernia, hiatal/exp "congenital, hereditary, and neonatal diseases and abnormalities"/ or exp congenital abnormalities/Intensive Care, Neonatal/ or Intensive Care Units, Neonatal/exp Prenatal Diagnosis/exp Pregnancy Complications/exp child/ or exp infant/(infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or pre-mature* or pre-mature* or preemie*).tw,kf.4 and (or/5-10)	1063 17046 1334598 22231 79719 463429 2706885 2569376
hernia, diaphragmatic/ or hernia, diaphragmatic, traumatic/ or hernia, hiatal/ exp "congenital, hereditary, and neonatal diseases and abnormalities"/ or exp congenital abnormalities/ Intensive Care, Neonatal/ or Intensive Care Units, Neonatal/ exp Prenatal Diagnosis/ exp Pregnancy Complications/ exp child/ or exp infant/ (infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf. 4 and (or/5-10)	17046 1334598 22231 79719 463429 2706885 2569376
exp "congenital, hereditary, and neonatal diseases and abnormalities"/ or exp congenital abnormalities/Intensive Care, Neonatal/ or Intensive Care Units, Neonatal/exp Prenatal Diagnosis/exp Pregnancy Complications/exp child/ or exp infant/(infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf.4 and (or/5-10)	1334598 22231 79719 463429 2706885 2569376
Intensive Care, Neonatal/ or Intensive Care Units, Neonatal/ exp Prenatal Diagnosis/ exp Pregnancy Complications/ exp child/ or exp infant/ (infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf. 4 and (or/5-10)	22231 79719 463429 2706885 2569376
exp Prenatal Diagnosis/ exp Pregnancy Complications/ exp child/ or exp infant/ (infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf. 4 and (or/5-10)	79719 463429 2706885 2569376
exp Pregnancy Complications/ exp child/ or exp infant/ (infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf. 4 and (or/5-10)	463429 2706885 2569376
exp child/ or exp infant/ (infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf. 4 and (or/5-10)	2706885 2569376
(infan* or child* or adolesc* or paediatr* or pediatr* or baby* or babies* or toddler* or kid or kids or boy* or girl* or nicu or preterm* or pre-term* or premature* or pre-mature* or preemie*).tw,kf. 4 and (or/5-10)	2569376
4 and (or/5-10)	C105
	0400
(agene* adj2 (hemidiaphragm* or diaphragm* or ((unilat* or hern*) adj1 diaphragm*))).tw,kf. [((agenesis or ageneses) adj2 (hemidiaphragm* or hemi-diaphragm or (unilateral adj1 diaphragm*))).tw,kf.]	86
((bochdalek* or morgagni*) adj2 (hernia* or defect*)).tw,kf.	1333
((congenital* or neonat* or neo-nat* or newborn* or new-born* or birth* or maternal* or fetal or fetus* or fetu or feto or foet* or prenatal* or pre-natal* or antenatal* or ante- natal* or trimester* or pregnan* or uter* or preterm* or pre-term* or premature* or pre- mature* or preemie*) adj5 (posterolateral* or substernal*) adj2 hernia*).tw,kf.	78
((congenital* or neonat* or neo-nat* or newborn* or new-born* or birth* or maternal* or fetal or fetus* or fetu or feto or foet* or prenatal* or pre-natal* or antenatal* or ante- natal* or trimester* or pregnan* or uter* or preterm* or pre-term* or premature* or pre- mature* or preemie*) adj2 diaphragm* adj2 (hernia* or defect*)).tw,kf.	5717
(congenital* and hernia* and diaphragm*).tw,kf.	6272
(or/5-9) and (hernia* and diaphragm*).tw,kf.	7177
1 or 3 or (or/11-17)	11010
limit 18 to yr="2017 -Current"	706
(Animals/ or Models, Animal/ or Disease Models, Animal/) not ((Animals/ or Models, Animal/) or Disease Models, Animal/) and Humans/)	5007892
((animal or animals or canine* or cat or cats or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or murine or pig or pigs or piglet* or	2533086
- (agene* adj2 (hemidiaphragm* or diaphragm* or ((unilat* or hern*) adj1 liaphragm*))).tw,kf. [((agenesis or ageneses) adj2 (hemidiaphragm* or hemi-diaphragm or (unilateral adj1 diaphragm*))).tw,kf.] (bochdalek* or morgagni*) adj2 (hernia* or defect*)).tw,kf. (congenital* or neonat* or neo-nat* or newborn* or new-born* or birth* or maternal* or etal or fetus* or fetu or feto or foet* or prenatal* or pre-natal* or antenatal* or anten- nature* or preemie*) adj5 (posterolateral* or substernal*) adj2 hernia*).tw,kf. (congenital* or neonat* or neo-nat* or newborn* or new-born* or birth* or maternal* or etal or fetus* or fetu or feto or foet* or prenatal* or pre-natal* or anten- nature* or preemie*) adj5 (posterolateral* or substernal*) adj2 hernia*).tw,kf. (congenital* or neo-nat* or neo-nat* or newborn* or new-born* or birth* or maternal* or etal or fetus* or feto or foet* or prenatal* or pre-natal* or anten- natal* or trimester* or pregnan* or uter* or preterm* or pre-natal* or anten- natal* or trimester* or pregnan* or uter* or preterm* or pre-natal* or anten- natal* or trimester* or pregnan* or uter* or preterm* or pre-term* or premature* or pre- nature* or preemie*) adj2 diaphragm* adj2 (hernia* or defect*)).tw,kf. congenital* and hernia* and diaphragm*).tw,kf. or/5-9) and (hernia* and diaphragm*).tw,kf. or (or/11-17) imit 18 to yr="2017 -Current" Animals/ or Models, Animal/ or Disease Models, Animal/) not ((Animals/ or Models, Animal/ or Disease Models, Animal/) and Humans/) (animal or animals or canine* or cat or cats or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or murine or pig or pigs or piglet* or Elena Guadagno, MLIS

	porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*) not (human* or patient*)).ti,kf,jw.	
22	19 not (20 or 21)	662
23	remove duplicates from 22	657

3/3	Elena Guadagno, MLIS	elena quadaqno@muhc mcqill ca
0/0	Harvey E. Beardmore Division of Pediatric Surgery, Montreal Children's Hospital	<u>cicia.guadagrio@inuic.mogin.ca</u>